These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31633779)

  • 1. 3D flow field estimation and assessment for live cell fluorescence microscopy.
    Manandhar S; Bouthemy P; Welf E; Danuser G; Roudot P; Kervrann C
    Bioinformatics; 2020 Mar; 36(5):1317-1325. PubMed ID: 31633779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical flow 3D segmentation and interpretation: a variational method with active curve evolution and level sets.
    Mitiche A; Sekkati H
    IEEE Trans Pattern Anal Mach Intell; 2006 Nov; 28(11):1818-29. PubMed ID: 17063686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PreMosa: extracting 2D surfaces from 3D microscopy mosaics.
    Blasse C; Saalfeld S; Etournay R; Sagner A; Eaton S; Myers EW
    Bioinformatics; 2017 Aug; 33(16):2563-2569. PubMed ID: 28383656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sequential algorithm to detect diffusion switching along intracellular particle trajectories.
    Briane V; Vimond M; Valades-Cruz CA; Salomon A; Wunder C; Kervrann C
    Bioinformatics; 2020 Jan; 36(1):317-329. PubMed ID: 31214689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An active particle-based tracking framework for 2D and 3D time-lapse microscopy images.
    Hossain MJ; Whelan PF; Czirok A; Ghita O
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6613-8. PubMed ID: 22255855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical flow computation and visualization in spherical context. Application on 3D+t bio-cellular sequences.
    Rekik W; Béréziat D; Dubuisson S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1645-8. PubMed ID: 17946472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion estimation of subcellular structures from fluorescence microscopy images.
    Vallmitjana A; Civera-Tregon A; Hoenicka J; Palau F; Benitez R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4419-4422. PubMed ID: 29060877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Parallel Intelligence Based Light Field Dataset for Depth Refinement and Scene Flow Estimation.
    Shen Y; Liu Y; Tian Y; Liu Z; Wang F
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal stereo and scene flow via stequel matching.
    Sizintsev M; Wildes RP
    IEEE Trans Pattern Anal Mach Intell; 2012 Jun; 34(6):1206-19. PubMed ID: 22516652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs.
    Slagmolen P; Hermans J; Maes F; Budiharto T; Haustermans K; van den Heuvel F
    Med Phys; 2010 Apr; 37(4):1554-64. PubMed ID: 20443476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry.
    Svoboda D; Kozubek M; Stejskal S
    Cytometry A; 2009 Jun; 75(6):494-509. PubMed ID: 19291805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic 3D motion estimation of left ventricle from C-arm rotational angiocardiography using a prior motion model and learning based boundary detector.
    Chen M; Zheng Y; Wang Y; Mueller K; Lauritsch G
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):90-7. PubMed ID: 24505748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DIVA: Natural Navigation Inside 3D Images Using Virtual Reality.
    El Beheiry M; Godard C; Caporal C; Marcon V; Ostertag C; Sliti O; Doutreligne S; Fournier S; Hajj B; Dahan M; Masson JB
    J Mol Biol; 2020 Jul; 432(16):4745-4749. PubMed ID: 32512003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large displacement optical flow: descriptor matching in variational motion estimation.
    Brox T; Malik J
    IEEE Trans Pattern Anal Mach Intell; 2011 Mar; 33(3):500-13. PubMed ID: 20714020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion analysis using 3D high-resolution frequency analysis.
    Ueda T; Fujii K; Hirobayashi S; Yoshizawa T; Misawa T
    IEEE Trans Image Process; 2013 Aug; 22(8):2946-59. PubMed ID: 23192554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of multiple, time-varying motions using time-frequency representations and moving-objects segmentation.
    Alexiadis DS; Sergiadis GD
    IEEE Trans Image Process; 2008 Jun; 17(6):982-90. PubMed ID: 18482892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MUlti-Dimensional Spline-Based Estimator (MUSE) for motion estimation: algorithm development and initial results.
    Viola F; Coe RL; Owen K; Guenther DA; Walker WF
    Ann Biomed Eng; 2008 Dec; 36(12):1942-60. PubMed ID: 18807190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.