These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31633859)

  • 1. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA.
    Kumar G; Eble JE; Gaither MR
    Mol Ecol Resour; 2020 Jan; 20(1):29-39. PubMed ID: 31633859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No filters, no fridges: a method for preservation of water samples for eDNA analysis.
    Williams KE; Huyvaert KP; Piaggio AJ
    BMC Res Notes; 2016 Jun; 9():298. PubMed ID: 27278936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Got Glycogen?: Development and Multispecies Validation of the Novel Preserve, Precipitate, Lyse, Precipitate, Purify (PPLPP) Workflow for Environmental DNA Extraction from Longmire's Preserved Water Samples.
    Edmunds RC; Burrows D
    J Biomol Tech; 2020 Dec; 31(4):125-150. PubMed ID: 33100918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standards for Methods Utilizing Environmental DNA for Detection of Fish Species.
    Shu L; Ludwig A; Peng Z
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32168762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing an eDNA protocol for estuarine environments: Balancing sensitivity, cost and time.
    Sanches TM; Schreier AD
    PLoS One; 2020; 15(5):e0233522. PubMed ID: 32437479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction.
    Renshaw MA; Olds BP; Jerde CL; McVeigh MM; Lodge DM
    Mol Ecol Resour; 2015 Jan; 15(1):168-76. PubMed ID: 24834966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental DNA filtration techniques affect recovered biodiversity.
    Majaneva M; Diserud OH; Eagle SHC; Boström E; Hajibabaei M; Ekrem T
    Sci Rep; 2018 Mar; 8(1):4682. PubMed ID: 29549344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Protocol optimization of eDNA analysis workflow for detecting Hucho bleekeri.].
    Jiang W; Wang QJ; Deng J; Zhao H; Kong F; Zhang HX
    Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2372-2378. PubMed ID: 29737148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the efficiency of open and enclosed filtration systems in environmental DNA quantification for fish and jellyfish.
    Takahashi S; Sakata MK; Minamoto T; Masuda R
    PLoS One; 2020; 15(4):e0231718. PubMed ID: 32310994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive eDNA collection enhances aquatic biodiversity analysis.
    Bessey C; Neil Jarman S; Simpson T; Miller H; Stewart T; Kenneth Keesing J; Berry O
    Commun Biol; 2021 Feb; 4(1):236. PubMed ID: 33619330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clearing muddied waters: Capture of environmental DNA from turbid waters.
    Williams KE; Huyvaert KP; Piaggio AJ
    PLoS One; 2017; 12(7):e0179282. PubMed ID: 28686659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-level biodiversity assessment using marine environmental DNA metabarcoding requires protocol optimization and standardization.
    Jeunen GJ; Knapp M; Spencer HG; Taylor HR; Lamare MD; Stat M; Bunce M; Gemmell NJ
    Ecol Evol; 2019 Feb; 9(3):1323-1335. PubMed ID: 30805162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field application of an improved protocol for environmental DNA extraction, purification, and measurement using Sterivex filter.
    Wong MK; Nakao M; Hyodo S
    Sci Rep; 2020 Dec; 10(1):21531. PubMed ID: 33298993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the fate of eDNA in the environment and implications for studying biodiversity.
    Harrison JB; Sunday JM; Rogers SM
    Proc Biol Sci; 2019 Nov; 286(1915):20191409. PubMed ID: 31744434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terrestrial mammal surveillance using hybridization capture of environmental DNA from African waterholes.
    Seeber PA; McEwen GK; Löber U; Förster DW; East ML; Melzheimer J; Greenwood AD
    Mol Ecol Resour; 2019 Nov; 19(6):1486-1496. PubMed ID: 31349392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can we manage fisheries with the inherent uncertainty from eDNA?
    Jerde CL
    J Fish Biol; 2021 Feb; 98(2):341-353. PubMed ID: 31769024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods to maximise recovery of environmental DNA from water samples.
    Hinlo R; Gleeson D; Lintermans M; Furlan E
    PLoS One; 2017; 12(6):e0179251. PubMed ID: 28604830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A probabilistic model for designing and assessing the performance of eDNA sampling protocols.
    Song JW; Schultz MT; Casman EA; Bockrath KD; Mize E; Monroe EM; Tuttle-Lau M; Small MJ
    Mol Ecol Resour; 2020 Mar; 20(2):404-414. PubMed ID: 31677222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish.
    Eichmiller JJ; Miller LM; Sorensen PW
    Mol Ecol Resour; 2016 Jan; 16(1):56-68. PubMed ID: 25919417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of bivalve filtration on eDNA-based detection of aquatic organisms.
    Friebertshauser R; Shollenberger K; Janosik A; Garner JT; Johnston C
    PLoS One; 2019; 14(11):e0222830. PubMed ID: 31721779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.