BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31634140)

  • 1. Predicting in-vitro Transcription Factor Binding Sites Using DNA Sequence + Shape.
    Zhang Q; Shen Z; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):667-676. PubMed ID: 31634140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel convolution attention model for predicting transcription factor binding sites by combination of sequence and shape.
    Zhang Y; Wang Z; Zeng Y; Liu Y; Xiong S; Wang M; Zhou J; Zou Q
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting In-Vitro DNA-Protein Binding With a Spatially Aligned Fusion of Sequence and Shape.
    Zhang Q; Zhang Y; Wang S; Chen ZH; Gribova V; Filaretov VF; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3144-3153. PubMed ID: 34882561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FCNGRU: Locating Transcription Factor Binding Sites by Combing Fully Convolutional Neural Network With Gated Recurrent Unit.
    Wang S; He Y; Chen Z; Zhang Q
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1883-1890. PubMed ID: 34613923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape.
    Ding P; Wang Y; Zhang X; Gao X; Liu G; Yu B
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture.
    Wang S; Zhang Q; Shen Z; He Y; Chen ZH; Li J; Huang DS
    Mol Ther Nucleic Acids; 2021 Jun; 24():154-163. PubMed ID: 33767912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Integrative Framework for Combining Sequence and Epigenomic Data to Predict Transcription Factor Binding Sites Using Deep Learning.
    Jing F; Zhang SW; Cao Z; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):355-364. PubMed ID: 30835229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weakly-Supervised Convolutional Neural Network Architecture for Predicting Protein-DNA Binding.
    Zhang Q; Zhu L; Bao W; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):679-689. PubMed ID: 30106688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Scale Capsule Network for Predicting DNA-Protein Binding Sites.
    Zhang Q; Yu W; Han K; Nandi AK; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1793-1800. PubMed ID: 32960766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning.
    Wang K; Zeng X; Zhou J; Liu F; Luan X; Wang X
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Transcription Factor Binding Sites With an Attention Augmented Convolutional Neural Network.
    Jing Zhang F; Zhang SW; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3614-3623. PubMed ID: 34752400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.
    Ma W; Yang L; Rohs R; Noble WS
    Bioinformatics; 2017 Oct; 33(19):3003-3010. PubMed ID: 28541376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence.
    Deng L; Wu H; Liu X; Liu H
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation learning of genomic sequence motifs with convolutional neural networks.
    Koo PK; Eddy SR
    PLoS Comput Biol; 2019 Dec; 15(12):e1007560. PubMed ID: 31856220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MulTFBS: A Spatial-Temporal Network with Multichannels for Predicting Transcription Factor Binding Sites.
    Zhuang J; Huang X; Liu S; Gao W; Su R; Feng K
    J Chem Inf Model; 2024 May; 64(10):4322-4333. PubMed ID: 38733561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PlantBind: an attention-based multi-label neural network for predicting plant transcription factor binding sites.
    Yan W; Li Z; Pian C; Wu Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36155619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs.
    Garcia-Alcalde F; Blanco A; Shepherd AJ
    BMC Bioinformatics; 2010 Nov; 11():551. PubMed ID: 21059262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Order Convolutional Neural Network Architecture for Predicting DNA-Protein Binding Sites.
    Zhang Q; Zhu L; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1184-1192. PubMed ID: 29993783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.