BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31634470)

  • 1. Structural Insights into Substrate Recognition and Activity Regulation of the Key Decarboxylase SbnH in Staphyloferrin B Biosynthesis.
    Tang J; Ju Y; Gu Q; Xu J; Zhou H
    J Mol Biol; 2019 Dec; 431(24):4868-4881. PubMed ID: 31634470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus.
    Cheung J; Beasley FC; Liu S; Lajoie GA; Heinrichs DE
    Mol Microbiol; 2009 Nov; 74(3):594-608. PubMed ID: 19775248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the Substrate Specificity of SbnA, the Enzyme Catalyzing the First Step in Staphyloferrin B Biosynthesis.
    Kobylarz MJ; Grigg JC; Liu Y; Lee MS; Heinrichs DE; Murphy ME
    Biochemistry; 2016 Feb; 55(6):927-39. PubMed ID: 26794841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Structure of d-Ornithine/d-Lysine Decarboxylase, a Stereoinverting Decarboxylase: Implications for Substrate Specificity and Stereospecificity of Fold III Decarboxylases.
    Phillips RS; Poteh P; Krajcovic D; Miller KA; Hoover TR
    Biochemistry; 2019 Feb; 58(8):1038-1042. PubMed ID: 30699288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for substrate specificity of meso-diaminopimelic acid decarboxylase from Corynebacterium glutamicum.
    Son HF; Kim KJ
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1815-1821. PubMed ID: 29233695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus.
    Beasley FC; Cheung J; Heinrichs DE
    BMC Microbiol; 2011 Sep; 11():199. PubMed ID: 21906287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and substrate specificity determinants of the taurine biosynthetic enzyme cysteine sulphinic acid decarboxylase.
    Mahootchi E; Raasakka A; Luan W; Muruganandam G; Loris R; Haavik J; Kursula P
    J Struct Biol; 2021 Mar; 213(1):107674. PubMed ID: 33253877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SbnI is a free serine kinase that generates
    Verstraete MM; Perez-Borrajero C; Brown KL; Heinrichs DE; Murphy MEP
    J Biol Chem; 2018 Apr; 293(16):6147-6160. PubMed ID: 29483190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of L-2,3-diaminopropionic acid, a siderophore and antibiotic precursor.
    Kobylarz MJ; Grigg JC; Takayama SJ; Rai DK; Heinrichs DE; Murphy ME
    Chem Biol; 2014 Mar; 21(3):379-88. PubMed ID: 24485762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal Structure and Pyridoxal 5-Phosphate Binding Property of Lysine Decarboxylase from Selenomonas ruminantium.
    Sagong HY; Son HF; Kim S; Kim YH; Kim IK; Kim KJ
    PLoS One; 2016; 11(11):e0166667. PubMed ID: 27861532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SbnG, a citrate synthase in Staphylococcus aureus: a new fold on an old enzyme.
    Kobylarz MJ; Grigg JC; Sheldon JR; Heinrichs DE; Murphy ME
    J Biol Chem; 2014 Dec; 289(49):33797-807. PubMed ID: 25336653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity of Staphyloferrin B recognition by the SirA receptor from Staphylococcus aureus.
    Grigg JC; Cheung J; Heinrichs DE; Murphy ME
    J Biol Chem; 2010 Nov; 285(45):34579-88. PubMed ID: 20810662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and Biochemical Characterization of SbnC as a Representative Type B Siderophore Synthetase.
    Tang J; Ju Y; Zhou J; Guo J; Gu Q; Xu J; Zhou H
    ACS Chem Biol; 2020 Oct; 15(10):2731-2740. PubMed ID: 32880431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into the mechanism of internal aldimine formation and catalytic loop dynamics in an archaeal Group II decarboxylase.
    Chellam Gayathri S; Manoj N
    J Struct Biol; 2019 Nov; 208(2):137-151. PubMed ID: 31445086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a positively charged platform in Staphylococcus aureus HtsA that is essential for ferric staphyloferrin A transport.
    Cooper JD; Hannauer M; Marolda CL; Briere LA; Heinrichs DE
    Biochemistry; 2014 Aug; 53(31):5060-9. PubMed ID: 25050909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The configuration of the chiral carbon atoms in staphyloferrin A and analysis of the transport properties in Staphylococcus aureus.
    Drechsel H; Winkelmann G
    Biometals; 2005 Feb; 18(1):75-81. PubMed ID: 15865412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TCA cycle activity in Staphylococcus aureus is essential for iron-regulated synthesis of staphyloferrin A, but not staphyloferrin B: the benefit of a second citrate synthase.
    Sheldon JR; Marolda CL; Heinrichs DE
    Mol Microbiol; 2014 May; 92(4):824-39. PubMed ID: 24666349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by
    Verstraete MM; Morales LD; Kobylarz MJ; Loutet SA; Laakso HA; Pinter TB; Stillman MJ; Heinrichs DE; Murphy MEP
    J Biol Chem; 2019 Jul; 294(30):11622-11636. PubMed ID: 31197035
    [No Abstract]   [Full Text] [Related]  

  • 19. Citryl Ornithine Is an Intermediate in a Three-Step Biosynthetic Pathway for Rhizoferrin in
    Ramakrishnan G; Pérez NM; Carroll C; Moore MM; Nakamoto RK; Fox TE
    ACS Chem Biol; 2019 Aug; 14(8):1760-1766. PubMed ID: 31260252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase.
    Toney MD; Hohenester E; Keller JW; Jansonius JN
    J Mol Biol; 1995 Jan; 245(2):151-79. PubMed ID: 7799433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.