These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31634661)

  • 1. Rate-dependent adhesion of cartilage and its relation to relaxation mechanisms.
    Han G; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2020 Feb; 102():103493. PubMed ID: 31634661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of nanoscale friction and adhesion properties of articular cartilage on contact load.
    Chan SM; Neu CP; Komvopoulos K; Reddi AH
    J Biomech; 2011 Apr; 44(7):1340-5. PubMed ID: 21316681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of lubricant entrapment at biological interfaces: reduction of friction and adhesion in articular cartilage.
    Chan SM; Neu CP; Komvopoulos K; Reddi AH
    J Biomech; 2011 Jul; 44(11):2015-20. PubMed ID: 21679953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of relaxation-dependent adhesion on pre-sliding response of cartilage.
    Han G; Eriten M
    R Soc Open Sci; 2018 May; 5(5):172051. PubMed ID: 29892390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscale surface friction of articular cartilage in early osteoarthritis.
    Desrochers J; Amrein MW; Matyas JR
    J Mech Behav Biomed Mater; 2013 Sep; 25():11-22. PubMed ID: 23726921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of synovial fluid on boundary lubrication of articular cartilage.
    Schmidt TA; Sah RL
    Osteoarthritis Cartilage; 2007 Jan; 15(1):35-47. PubMed ID: 16859933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication.
    Krishnan R; Kopacz M; Ateshian GA
    J Orthop Res; 2004 May; 22(3):565-70. PubMed ID: 15099636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective lubrication of articular cartilage by an amphiphilic hyaluronic acid derivative.
    Schiavinato A; Whiteside RA
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):515-9. PubMed ID: 22209622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage.
    Forster H; Fisher J
    Proc Inst Mech Eng H; 1999; 213(4):329-45. PubMed ID: 10466364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscope investigation of the boundary-lubricant layer in articular cartilage.
    Chan SM; Neu CP; Duraine G; Komvopoulos K; Reddi AH
    Osteoarthritis Cartilage; 2010 Jul; 18(7):956-63. PubMed ID: 20417298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of loading time and lubricant on the friction of articular cartilage.
    Forster H; Fisher J
    Proc Inst Mech Eng H; 1996; 210(2):109-19. PubMed ID: 8688115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biphasic surface amorphous layer lubrication of articular cartilage.
    Graindorge S; Ferrandez W; Jin Z; Ingham E; Grant C; Twigg P; Fisher J
    Med Eng Phys; 2005 Dec; 27(10):836-44. PubMed ID: 16046176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Loading on the Adhesion and Frictional Characteristics of Top Layer Articular Cartilage Nanoscale Contact: A Molecular Dynamics Study.
    Chatterjee A; Dubey DK; Sinha SK
    Langmuir; 2021 Jan; 37(1):46-62. PubMed ID: 33382944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesion-Lubrication Paradox of Articular Cartilage.
    Benson JM; Moore AC; Schrader J; Burris DL
    Langmuir; 2024 Jul; 40(27):13810-13818. PubMed ID: 38918081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Friction coefficients for mechanically damaged bovine articular cartilage.
    Shi L; Brunski DB; Sikavitsas VI; Johnson MB; Striolo A
    Biotechnol Bioeng; 2012 Jul; 109(7):1769-78. PubMed ID: 22252687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrostatic pressurization and depletion of trapped lubricant pool during creep contact of a rippled indenter against a biphasic articular cartilage layer.
    Soltz MA; Basalo IM; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):585-93. PubMed ID: 14618917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of friction properties of hydrogels based on a biphasic cartilage model.
    Baykal D; Underwood RJ; Mansmann K; Marcolongo M; Kurtz SM
    J Mech Behav Biomed Mater; 2013 Dec; 28():263-73. PubMed ID: 24008138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface.
    Lawrence A; Xu X; Bible MD; Calve S; Neu CP; Panitch A
    Biomaterials; 2015 Dec; 73():42-50. PubMed ID: 26398308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An equine joint friction test model using a cartilage-on-cartilage arrangement.
    Noble P; Collin B; Lecomte-Beckers J; Magnée A; Denoix JM; Serteyn D
    Vet J; 2010 Feb; 183(2):148-52. PubMed ID: 19141370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.