These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31634742)

  • 1. Characterizing cesium sorption in freshwater settings using fluvial sediments and characteristic water chemistries.
    Ratliff K; Mikelonis A; Duffy J
    J Environ Manage; 2020 Jan; 253():109688. PubMed ID: 31634742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
    Flury M; Czigány S; Chen G; Harsh JB
    J Contam Hydrol; 2004 Jul; 71(1-4):111-26. PubMed ID: 15145564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cesium migration in Hanford sediment: a multisite cation exchange model based on laboratory transport experiments.
    Steefel CI; Carroll S; Zhao P; Roberts S
    J Contam Hydrol; 2003 Dec; 67(1-4):219-46. PubMed ID: 14607478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key factors controlling radiocesium sorption and fixation in river sediments around the Fukushima Daiichi Nuclear Power Plant. Part 2: Sorption and fixation behaviors and their relationship to sediment properties.
    Tachi Y; Sato T; Takeda C; Ishidera T; Fujiwara K; Iijima K
    Sci Total Environ; 2020 Jul; 724():138097. PubMed ID: 32247124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Hanford site, USA.
    Liu C; Zachara JM; Smith SC
    J Contam Hydrol; 2004 Feb; 68(3-4):217-38. PubMed ID: 14734247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the long-term (137)Cs distribution in Fukushima after the Fukushima Dai-ichi nuclear power plant accident: a parameter sensitivity analysis.
    Yamaguchi M; Kitamura A; Oda Y; Onishi Y
    J Environ Radioact; 2014 Sep; 135():135-46. PubMed ID: 24836353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key factors controlling radiocesium sorption and fixation in river sediments around the Fukushima Daiichi Nuclear Power Plant. Part 1: Insights from sediment properties and radiocesium distributions.
    Tachi Y; Sato T; Akagi Y; Kawamura M; Nakane H; Terashima M; Fujiwara K; Iijima K
    Sci Total Environ; 2020 Jul; 724():138098. PubMed ID: 32247121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of temperature on Cs+ sorption and desorption in subsurface sediments at the Hanford Site, U.S.A.
    Liu C; Zachara JM; Qafoku O; Smith SC
    Environ Sci Technol; 2003 Jun; 37(12):2640-5. PubMed ID: 12854700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloid-facilitated Cs transport through water-saturated Hanford sediment and Ottawa sand.
    Zhuang J; Flury M; Jin Y
    Environ Sci Technol; 2003 Nov; 37(21):4905-11. PubMed ID: 14620817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model.
    Kinouchi T; Yoshimura K; Omata T
    J Environ Radioact; 2015 Jan; 139():407-415. PubMed ID: 25131841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation capability for cesium differs among bacterial species: A comprehensive study using bacteria isolated from freshwater and coastal sediment.
    Li J; Wang Y; Li W; Bhat SA; Wei Y; Deng Z; Hao X; Li F
    Environ Pollut; 2022 Jan; 292(Pt B):118431. PubMed ID: 34743968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River.
    Iwasaki T; Nabi M; Shimizu Y; Kimura I
    J Environ Radioact; 2015 Jan; 139():416-426. PubMed ID: 24909793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental approach to assess the post-depositional mobility of
    Bam W; Teyssié JL; Metian M; Oberhaensli F; Maiti K; Swarzenski PW
    J Environ Radioact; 2021 Dec; 240():106753. PubMed ID: 34619634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fixation of Cs to marine sediments estimated by a stochastic modelling approach.
    Børretzen P; Salbu B
    J Environ Radioact; 2002; 61(1):1-20. PubMed ID: 12113501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remobilisation of 109Cd, 65Zn and 54Mn from freshwater-labelled river sediments when mixed with seawater.
    Standring WJ; Oughton DH; Salbu B
    Environ Int; 2002 Jul; 28(3):185-95. PubMed ID: 12222615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decommissioning of a nuclear power plant: determination of site-specific sorption coefficients for Co-60 and Cs-137.
    Delakowitz B; Meinrath G
    Isotopes Environ Health Stud; 1998; 34(4):371-80. PubMed ID: 10089594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox transformations and transport of cesium and iodine (-1, 0, +5) in oxidizing and reducing zones of a sand and gravel aquifer.
    Fox PM; Kent DB; Davis JA
    Environ Sci Technol; 2010 Mar; 44(6):1940-6. PubMed ID: 20170159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption-desorption characteristics of uranium, cesium and strontium in typical podzol soils from Ukraine.
    Mishra S; Arae H; Zamostyan PV; Ishikawa T; Yonehara H; Sahoo SK
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):238-42. PubMed ID: 22929558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of sediment properties and solution pH in the adsorption of uranium(VI) to freshwater sediments.
    Crawford SE; Lofts S; Liber K
    Environ Pollut; 2017 Jan; 220(Pt B):873-881. PubMed ID: 27825841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting the sorption of cesium in a nutrient-poor boreal bog.
    Lusa M; Bomberg M; Virtanen S; Lempinen J; Aromaa H; Knuutinen J; Lehto J
    J Environ Radioact; 2015 Sep; 147():22-32. PubMed ID: 26010098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.