These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
658 related articles for article (PubMed ID: 31634769)
1. An expert system for brain tumor detection: Fuzzy C-means with super resolution and convolutional neural network with extreme learning machine. Özyurt F; Sert E; Avcı D Med Hypotheses; 2020 Jan; 134():109433. PubMed ID: 31634769 [TBL] [Abstract][Full Text] [Related]
2. A new approach for brain tumor diagnosis system: Single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network. Sert E; Özyurt F; Doğantekin A Med Hypotheses; 2019 Dec; 133():109413. PubMed ID: 31586812 [TBL] [Abstract][Full Text] [Related]
3. Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware. Şişik F; Sert E Med Hypotheses; 2020 Mar; 136():109507. PubMed ID: 31812927 [TBL] [Abstract][Full Text] [Related]
4. BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model. Toğaçar M; Ergen B; Cömert Z Med Hypotheses; 2020 Jan; 134():109531. PubMed ID: 31877442 [TBL] [Abstract][Full Text] [Related]
5. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer. Kar S; Majumder DD Int J Clin Oncol; 2017 Aug; 22(4):667-681. PubMed ID: 28321787 [TBL] [Abstract][Full Text] [Related]
6. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm. Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596 [TBL] [Abstract][Full Text] [Related]
7. Super-resolution reconstruction of MR image with a novel residual learning network algorithm. Shi J; Liu Q; Wang C; Zhang Q; Ying S; Xu H Phys Med Biol; 2018 Apr; 63(8):085011. PubMed ID: 29583134 [TBL] [Abstract][Full Text] [Related]
8. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images. Naceur MB; Saouli R; Akil M; Kachouri R Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717 [TBL] [Abstract][Full Text] [Related]
9. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks. Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061 [TBL] [Abstract][Full Text] [Related]
10. Super-resolution of brain tumor MRI images based on deep learning. Zhou Z; Ma A; Feng Q; Wang R; Cheng L; Chen X; Yang X; Liao K; Miao Y; Qiu Y J Appl Clin Med Phys; 2022 Nov; 23(11):e13758. PubMed ID: 36107021 [TBL] [Abstract][Full Text] [Related]
11. An Efficient Multi-Scale Convolutional Neural Network Based Multi-Class Brain MRI Classification for SaMD. Yazdan SA; Ahmad R; Iqbal N; Rizwan A; Khan AN; Kim DH Tomography; 2022 Jul; 8(4):1905-1927. PubMed ID: 35894026 [TBL] [Abstract][Full Text] [Related]
12. An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation. Hoseini F; Shahbahrami A; Bayat P J Digit Imaging; 2018 Oct; 31(5):738-747. PubMed ID: 29488179 [TBL] [Abstract][Full Text] [Related]
13. White blood cells detection and classification based on regional convolutional neural networks. Kutlu H; Avci E; Özyurt F Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248 [TBL] [Abstract][Full Text] [Related]
14. Exploring fetal brain tumor glioblastoma symptom verification with self organizing maps and vulnerability data analysis. Natarajan SK; S J; Mathivanan SK; Rajadurai H; M B BAM; Shah MA Sci Rep; 2024 Apr; 14(1):8738. PubMed ID: 38627421 [TBL] [Abstract][Full Text] [Related]
15. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. Saeedi S; Rezayi S; Keshavarz H; R Niakan Kalhori S BMC Med Inform Decis Mak; 2023 Jan; 23(1):16. PubMed ID: 36691030 [TBL] [Abstract][Full Text] [Related]
16. Brain tumor segmentation with Deep Neural Networks. Havaei M; Davy A; Warde-Farley D; Biard A; Courville A; Bengio Y; Pal C; Jodoin PM; Larochelle H Med Image Anal; 2017 Jan; 35():18-31. PubMed ID: 27310171 [TBL] [Abstract][Full Text] [Related]
17. MR Image Super-Resolution via Wide Residual Networks With Fixed Skip Connection. Shi J; Li Z; Ying S; Wang C; Liu Q; Zhang Q; Yan P IEEE J Biomed Health Inform; 2019 May; 23(3):1129-1140. PubMed ID: 29993565 [TBL] [Abstract][Full Text] [Related]
18. An Enhancement of Deep Learning Algorithm for Brain Tumor Segmentation Using Kernel Based CNN with M-SVM. Thillaikkarasi R; Saravanan S J Med Syst; 2019 Feb; 43(4):84. PubMed ID: 30810822 [TBL] [Abstract][Full Text] [Related]
19. Suspicious Lesion Segmentation on Brain, Mammograms and Breast MR Images Using New Optimized Spatial Feature Based Super-Pixel Fuzzy C-Means Clustering. Kumar SN; Fred AL; Varghese PS J Digit Imaging; 2019 Apr; 32(2):322-335. PubMed ID: 30402671 [TBL] [Abstract][Full Text] [Related]
20. Magnetic Resonance Imaging Images Based Brain Tumor Extraction, Segmentation and Detection Using Convolutional Neural Network and VGC 16 Model. Shunmugavel G; Suriyan K; Arumugam J Am J Clin Oncol; 2024 Jul; 47(7):339-349. PubMed ID: 38632686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]