These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31634822)

  • 1. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation.
    Eitel F; Soehler E; Bellmann-Strobl J; Brandt AU; Ruprecht K; Giess RM; Kuchling J; Asseyer S; Weygandt M; Haynes JD; Scheel M; Paul F; Ritter K
    Neuroimage Clin; 2019; 24():102003. PubMed ID: 31634822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification.
    Böhle M; Eitel F; Weygandt M; Ritter K
    Front Aging Neurosci; 2019; 11():194. PubMed ID: 31417397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer's disease.
    Dyrba M; Hanzig M; Altenstein S; Bader S; Ballarini T; Brosseron F; Buerger K; Cantré D; Dechent P; Dobisch L; Düzel E; Ewers M; Fliessbach K; Glanz W; Haynes JD; Heneka MT; Janowitz D; Keles DB; Kilimann I; Laske C; Maier F; Metzger CD; Munk MH; Perneczky R; Peters O; Preis L; Priller J; Rauchmann B; Roy N; Scheffler K; Schneider A; Schott BH; Spottke A; Spruth EJ; Weber MA; Ertl-Wagner B; Wagner M; Wiltfang J; Jessen F; Teipel SJ;
    Alzheimers Res Ther; 2021 Nov; 13(1):191. PubMed ID: 34814936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable deep learning as a means for decrypting disease signature in multiple sclerosis.
    Cruciani F; Brusini L; Zucchelli M; Retuci Pinheiro G; Setti F; Boscolo Galazzo I; Deriche R; Rittner L; Calabrese M; Menegaz G
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34181581
    [No Abstract]   [Full Text] [Related]  

  • 5. Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI.
    Coll L; Pareto D; Carbonell-Mirabent P; Cobo-Calvo Á; Arrambide G; Vidal-Jordana Á; Comabella M; Castilló J; Rodríguez-Acevedo B; Zabalza A; Galán I; Midaglia L; Nos C; Salerno A; Auger C; Alberich M; Río J; Sastre-Garriga J; Oliver A; Montalban X; Rovira À; Tintoré M; Lladó X; Tur C
    Neuroimage Clin; 2023; 38():103376. PubMed ID: 36940621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning for discrimination of active and inactive lesions in multiple sclerosis using non-contrast FLAIR MRI: A multicenter study.
    Amini A; Shayganfar A; Amini Z; Ostovar L; HajiAhmadi S; Chitsaz N; Rabbani M; Kafieh R
    Mult Scler Relat Disord; 2024 Jul; 87():105642. PubMed ID: 38703520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a deep learning network for Alzheimer's disease classification with evaluation of imaging modality and longitudinal data.
    Deatsch A; Perovnik M; Namías M; Trošt M; Jeraj R
    Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 36055243
    [No Abstract]   [Full Text] [Related]  

  • 8. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.
    Essa E; Aldesouky D; Hussein SE; Rashad MZ
    Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the classification of multiple sclerosis and cerebral small vessel disease with interpretable transfer attention neural network.
    Xu W; Rong Z; Ma W; Zhu B; Li N; Huang J; Liu Z; Yu Y; Zhang F; Zhang X; Ge M; Hou Y
    Comput Biol Med; 2024 Jun; 176():108530. PubMed ID: 38749324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
    Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X
    Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global and Regional Deep Learning Models for Multiple Sclerosis Stratification From MRI.
    Coll L; Pareto D; Carbonell-Mirabent P; Cobo-Calvo Á; Arrambide G; Vidal-Jordana Á; Comabella M; Castilló J; Rodrı Guez-Acevedo B; Zabalza A; Galán I; Midaglia L; Nos C; Auger C; Alberich M; Río J; Sastre-Garriga J; Oliver A; Montalban X; Rovira À; Tintoré M; Lladó X; Tur C
    J Magn Reson Imaging; 2024 Jul; 60(1):258-267. PubMed ID: 37803817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging.
    Zhang Y; Hong D; McClement D; Oladosu O; Pridham G; Slaney G
    J Neurosci Methods; 2021 Apr; 353():109098. PubMed ID: 33582174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks.
    Gros C; De Leener B; Badji A; Maranzano J; Eden D; Dupont SM; Talbott J; Zhuoquiong R; Liu Y; Granberg T; Ouellette R; Tachibana Y; Hori M; Kamiya K; Chougar L; Stawiarz L; Hillert J; Bannier E; Kerbrat A; Edan G; Labauge P; Callot V; Pelletier J; Audoin B; Rasoanandrianina H; Brisset JC; Valsasina P; Rocca MA; Filippi M; Bakshi R; Tauhid S; Prados F; Yiannakas M; Kearney H; Ciccarelli O; Smith S; Treaba CA; Mainero C; Lefeuvre J; Reich DS; Nair G; Auclair V; McLaren DG; Martin AR; Fehlings MG; Vahdat S; Khatibi A; Doyon J; Shepherd T; Charlson E; Narayanan S; Cohen-Adad J
    Neuroimage; 2019 Jan; 184():901-915. PubMed ID: 30300751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
    Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques.
    Saeedi S; Rezayi S; Keshavarz H; R Niakan Kalhori S
    BMC Med Inform Decis Mak; 2023 Jan; 23(1):16. PubMed ID: 36691030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.
    Valverde S; Salem M; Cabezas M; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Salvi J; Oliver A; Lladó X
    Neuroimage Clin; 2019; 21():101638. PubMed ID: 30555005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of Alzheimer's disease based on morphology and atrophy using machine learning combined with automated segmentation.
    Ikemitsu N; Kanazawa Y; Haga A; Hayashi H; Matsumoto Y; Harada M
    Acta Radiol; 2024 Apr; 65(4):359-366. PubMed ID: 38196180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.
    Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X
    Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.