These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31634846)

  • 1. Wearable Millimeter-Wave Device for Contactless Measurement of Arterial Pulses.
    Johnson JE; Shay O; Kim C; Liao C
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1525-1534. PubMed ID: 31634846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: the PulsePen device.
    Salvi P; Lio G; Labat C; Ricci E; Pannier B; Benetos A
    J Hypertens; 2004 Dec; 22(12):2285-93. PubMed ID: 15614022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cuffless blood pressure estimation from the carotid pulse arrival time using continuous wave radar.
    Buxi D; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5704-7. PubMed ID: 26737587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote Estimation of Blood Pressure Using Millimeter-Wave Frequency-Modulated Continuous-Wave Radar.
    Singh L; You S; Jeong BJ; Koo C; Kim Y
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring.
    Yi Z; Liu Z; Li W; Ruan T; Chen X; Liu J; Yang B; Zhang W
    Adv Mater; 2022 Apr; 34(16):e2110291. PubMed ID: 35285098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Pressure wave shape comparison between two non-invasive tonometric devices].
    Agnoletti D; Millasseau S; Topouchian J; Zhang Y; Safar ME; Blacher J
    Ann Cardiol Angeiol (Paris); 2013 Jun; 62(3):193-9. PubMed ID: 23721987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brachialis Pulse Wave Measurements with Ultra-Wide Band and Continuous Wave Radar, Photoplethysmography and Ultrasonic Doppler Sensors.
    Hellbrück H; Ardelt G; Wegerich P; Gehring H
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waveform Morphology Comparison in Wearable Blood Pressure Sensors.
    Gomes E; Naima R; Liao C; Shay O
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2902-2905. PubMed ID: 36086617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity of a novel wristband tonometer for measuring central hemodynamics and augmentation index.
    Beck DT; Martin JS; Nichols WW; Gurovich AN; Braith RW
    Am J Hypertens; 2014 Jul; 27(7):926-31. PubMed ID: 24561655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compact pulsatile simulator based on cam-follower mechanism for generating radial pulse waveforms.
    Yang TH; Jo G; Koo JH; Woo SY; Kim JU; Kim YM
    Biomed Eng Online; 2019 Jan; 18(1):1. PubMed ID: 30602383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Wearable Sensor Using Structured Silver-Particle Reinforced PDMS for Radial Arterial Pulse Wave Monitoring.
    Fu Y; Zhao S; Wang L; Zhu R
    Adv Healthc Mater; 2019 Sep; 8(17):e1900633. PubMed ID: 31293071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diaphragm-based optical fiber sensor for pulse wave monitoring and cardiovascular diseases diagnosis.
    Wang J; Liu K; Sun Q; Ni X; Ai F; Wang S; Yan Z; Liu D
    J Biophotonics; 2019 Oct; 12(10):e201900084. PubMed ID: 31219245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood Pressure Estimation Using Pulse Transit Time From Bioimpedance and Continuous Wave Radar.
    Buxi D; Redout JM; Yuce MR
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):917-927. PubMed ID: 27337707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust Bioimpedance Structure for Smartwatch-Based Blood Pressure Monitoring.
    Huynh TH; Jafari R; Chung WY
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Blood Pulsation Simulator Platform Incorporating Cardiovascular Physiology for Evaluating Radial Pulse Waveform.
    Yang TH; Kim JU; Kim YM; Koo JH; Woo SY
    J Healthc Eng; 2019; 2019():4938063. PubMed ID: 30886685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of pulse transit time using ultra-wideband radar.
    Cho HS; Park YJ
    Technol Health Care; 2021; 29(5):859-868. PubMed ID: 33427703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Arterial Pulse Wave Velocity from Doppler Radar Measurements: a Feasibility Study.
    Vasireddy R; Goette J; Jacomet M; Vogt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5460-5464. PubMed ID: 31947091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal Measurement of Arterial Pulse Waves Enabled by Wearable Active-Matrix Pressure Sensor Arrays.
    Baek S; Lee Y; Baek J; Kwon J; Kim S; Lee S; Strunk KP; Stehlin S; Melzer C; Park SM; Ko H; Jung S
    ACS Nano; 2022 Jan; 16(1):368-377. PubMed ID: 34910466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Calibration Method for Blood Pressure Pulse Wave Measurement Based on Arterial Tonometry Method.
    Shimura K; Hori M; Dohi T; Takao H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Transfer Function Model Development for Reconstructing Radial Pulse Pressure Waveforms Using Non-Invasively Measured Pulses by a Robotic Tonometry System.
    Jo G; Yang TH; Koo JH; Jun MH; Kim YM
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.