These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 31634852)
1. Integrative Hypergraph Regularization Principal Component Analysis for Sample Clustering and Co-Expression Genes Network Analysis on Multi-Omics Data. Wu MJ; Gao YL; Liu JX; Zheng CH; Wang J IEEE J Biomed Health Inform; 2020 Jun; 24(6):1823-1834. PubMed ID: 31634852 [TBL] [Abstract][Full Text] [Related]
2. Correntropy-Based Hypergraph Regularized NMF for Clustering and Feature Selection on Multi-Cancer Integrated Data. Yu N; Wu MJ; Liu JX; Zheng CH; Xu Y IEEE Trans Cybern; 2021 Aug; 51(8):3952-3963. PubMed ID: 32603306 [TBL] [Abstract][Full Text] [Related]
3. Low Rank Subspace Clustering via Discrete Constraint and Hypergraph Regularization for Tumor Molecular Pattern Discovery. Liu J; Cheng Y; Wang X; Cui X; Kong Y; Du J IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1500-1512. PubMed ID: 29993749 [TBL] [Abstract][Full Text] [Related]
4. Robust Principal Component Analysis Based On Hypergraph Regularization for Sample Clustering and Co-Characteristic Gene Selection. Gao YL; Wu MJ; Liu JX; Zheng CH; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2420-2430. PubMed ID: 33690124 [TBL] [Abstract][Full Text] [Related]
5. HTRPCA: Hypergraph Regularized Tensor Robust Principal Component Analysis for Sample Clustering in Tumor Omics Data. Zhao YY; Jiao CN; Wang ML; Liu JX; Wang J; Zheng CH Interdiscip Sci; 2022 Mar; 14(1):22-33. PubMed ID: 34115312 [TBL] [Abstract][Full Text] [Related]
6. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets. Wei Z; Zhang Y; Weng W; Chen J; Cai H Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167 [TBL] [Abstract][Full Text] [Related]
7. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. Wu D; Wang D; Zhang MQ; Gu J BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453 [TBL] [Abstract][Full Text] [Related]
8. Integrative Analysis of Multi-Omics Data Based on Blockwise Sparse Principal Components. Park M; Kim D; Moon K; Park T Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33147797 [TBL] [Abstract][Full Text] [Related]
9. Multi-view manifold regularized compact low-rank representation for cancer samples clustering on multi-omics data. Wang J; Lu CH; Kong XZ; Dai LY; Yuan S; Zhang X BMC Bioinformatics; 2022 Jan; 22(Suppl 12):334. PubMed ID: 35057729 [TBL] [Abstract][Full Text] [Related]
10. Independent Component Analysis for Unraveling the Complexity of Cancer Omics Datasets. Sompairac N; Nazarov PV; Czerwinska U; Cantini L; Biton A; Molkenov A; Zhumadilov Z; Barillot E; Radvanyi F; Gorban A; Kairov U; Zinovyev A Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500324 [TBL] [Abstract][Full Text] [Related]
11. PCA Based on Graph Laplacian Regularization and P-Norm for Gene Selection and Clustering. Feng CM; Gao YL; Liu JX; Zheng CH; Yu J IEEE Trans Nanobioscience; 2017 Jun; 16(4):257-265. PubMed ID: 28371780 [TBL] [Abstract][Full Text] [Related]
12. PCA via joint graph Laplacian and sparse constraint: Identification of differentially expressed genes and sample clustering on gene expression data. Feng CM; Xu Y; Hou MX; Dai LY; Shang JL BMC Bioinformatics; 2019 Dec; 20(Suppl 22):716. PubMed ID: 31888433 [TBL] [Abstract][Full Text] [Related]
13. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Li M; Qi Z; Liu L; Lou M; Deng S J Bioinform Comput Biol; 2024 Aug; 22(4):2450014. PubMed ID: 39183679 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear dimensionality reduction of gene expression data for visualization and clustering analysis of cancer tissue samples. Shi J; Luo Z Comput Biol Med; 2010 Aug; 40(8):723-32. PubMed ID: 20637456 [TBL] [Abstract][Full Text] [Related]
15. Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Rappoport N; Shamir R Nucleic Acids Res; 2018 Nov; 46(20):10546-10562. PubMed ID: 30295871 [TBL] [Abstract][Full Text] [Related]
16. A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression. Liu Y; Gu Q; Hou JP; Han J; Ma J BMC Bioinformatics; 2014 Feb; 15():37. PubMed ID: 24491042 [TBL] [Abstract][Full Text] [Related]
17. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data. Lemsara A; Ouadfel S; Fröhlich H BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344 [TBL] [Abstract][Full Text] [Related]
18. Robust hypergraph regularized non-negative matrix factorization for sample clustering and feature selection in multi-view gene expression data. Yu N; Gao YL; Liu JX; Wang J; Shang J Hum Genomics; 2019 Oct; 13(Suppl 1):46. PubMed ID: 31639067 [TBL] [Abstract][Full Text] [Related]
19. Identifying cooperating cancer driver genes in individual patients through hypergraph random walk. Zhang T; Zhang SW; Xie MY; Li Y J Biomed Inform; 2024 Sep; 157():104710. PubMed ID: 39159864 [TBL] [Abstract][Full Text] [Related]
20. Gene expression data classification using locally linear discriminant embedding. Li B; Zheng CH; Huang DS; Zhang L; Han K Comput Biol Med; 2010 Oct; 40(10):802-10. PubMed ID: 20864095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]