BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31634890)

  • 1. Increased Carbon Monoxide Washout Rates in Newborn Infants.
    Stevenson DK; Wong RJ; Ostrander CR; Maric I; Vreman HJ; Cohen RS
    Neonatology; 2020; 117(1):118-122. PubMed ID: 31634890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neonatal bilirubin production estimated from "end-tidal" carbon monoxide concentration.
    Smith DW; Hopper AO; Shahin SM; Cohen RS; Ostrander CR; Ariagno RL; Stevenson DK
    J Pediatr Gastroenterol Nutr; 1984; 3(1):77-80. PubMed ID: 6537974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. End-tidal carbon monoxide and hemolysis.
    Tidmarsh GF; Wong RJ; Stevenson DK
    J Perinatol; 2014 Aug; 34(8):577-81. PubMed ID: 24743136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neonatal hyperbilirubinemia management: Clinical assessment of bilirubin production.
    Du L; Ma X; Shen X; Bao Y; Chen L; Bhutani VK
    Semin Perinatol; 2021 Feb; 45(1):151351. PubMed ID: 33308896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An End-Tidal Carbon Monoxide Nomogram for Term and Late-Preterm Chinese Newborns.
    Bao Y; Zhu J; Ma L; Zhang H; Sun L; Xu C; Wu J; He Y; Du L
    J Pediatr; 2022 Nov; 250():16-21.e3. PubMed ID: 35835229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon monoxide excretion as an index of bilirubin production in rhesus monkeys.
    Vreman HJ; Rodgers PA; Gale R; Stevenson DK
    J Med Primatol; 1989; 18(6):449-60. PubMed ID: 2614809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of end-tidal carbon monoxide measurements with direct antiglobulin tests in the management of neonatal hyperbilirubinemia.
    Elsaie AL; Taleb M; Nicosia A; Zangaladze A; Pease ME; Newton K; Schutzman DL
    J Perinatol; 2020 Oct; 40(10):1513-1517. PubMed ID: 32203175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of risk for neonatal haemolysis.
    Bhutani VK; Maisels MJ; Schutzman DL; Castillo Cuadrado ME; Aby JL; Bogen DL; Christensen RD; Watchko JF; Wong RJ; Stevenson DK
    Acta Paediatr; 2018 Aug; 107(8):1350-1356. PubMed ID: 29532503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of neonatal haemolysis: an approach to predischarge management of neonatal hyperbilirubinemia.
    Bhutani VK; Srinivas S; Castillo Cuadrado ME; Aby JL; Wong RJ; Stevenson DK
    Acta Paediatr; 2016 May; 105(5):e189-94. PubMed ID: 26802319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-tidal carbon monoxide concentrations measured within 48 hours of birth predict hemolytic hyperbilirubinemia.
    Cheng X; Lin B; Yang Y; Yu Y; Fu Y; Yang C
    J Perinatol; 2024 Jun; 44(6):897-901. PubMed ID: 38627593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paired determinations of blood carboxyhemoglobin concentration and carbon monoxide excretion rate in term and preterm infants.
    Ostrander CR; Cohen RS; Hopper AO; Cowan BE; Stevens GB; Stevenson DK
    J Lab Clin Med; 1982 Nov; 100(5):745-55. PubMed ID: 7130831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc protoporphyrin administration for suppression of increased bilirubin production by iatrogenic hemolysis in rhesus neonates.
    Vreman HJ; Rodgers PA; Stevenson DK
    J Pediatr; 1990 Aug; 117(2 Pt 1):292-7. PubMed ID: 2380831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive Detection of Hemolysis with ETCOc Measurement in Neonates at Risk for Significant Hyperbilirubinemia.
    Bhatia A; Chua MC; Dela Puerta R; Rajadurai VS
    Neonatology; 2020; 117(5):612-618. PubMed ID: 32894848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of hemolysis to early jaundice in normal newborns.
    Maisels MJ; Kring E
    Pediatrics; 2006 Jul; 118(1):276-9. PubMed ID: 16818575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboxyhemoglobin levels as a predictor of risk for significant hyperbilirubinemia in African-American DAT(+) infants.
    Schutzman DL; Gatien E; Ajayi S; Wong RJ
    J Perinatol; 2016 May; 36(5):386-8. PubMed ID: 26765551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heme oxygenase-1 genetic variants and the conundrum of hyperbilirubinemia in African-American newborns.
    Schutzman DL; Gatien E; Ajayi S; Wong RJ
    J Perinatol; 2018 Apr; 38(4):345-350. PubMed ID: 29302043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilirubin production and hour-specific bilirubin levels.
    Bhutani VK; Wong RJ; Vreman HJ; Stevenson DK;
    J Perinatol; 2015 Sep; 35(9):735-8. PubMed ID: 25880796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilirubin production in healthy term infants as measured by carbon monoxide in breath.
    Stevenson DK; Vreman HJ; Oh W; Fanaroff AA; Wright LL; Lemons JA; Verter J; Shankaran S; Tyson JE; Korones SB
    Clin Chem; 1994 Oct; 40(10):1934-9. PubMed ID: 7923775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imbalance between production and conjugation of bilirubin: a fundamental concept in the mechanism of neonatal jaundice.
    Kaplan M; Muraca M; Hammerman C; Rubaltelli FF; Vilei MT; Vreman HJ; Stevenson DK
    Pediatrics; 2002 Oct; 110(4):e47. PubMed ID: 12359820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring End-Tidal Carbon Monoxide of Jaundiced Neonates in the Birth Hospital to Identify Those with Hemolysis.
    Christensen RD; Malleske DT; Lambert DK; Baer VL; Prchal JT; Denson LE; Gerday E; Weaver Lewis KA; Shepherd JG
    Neonatology; 2016; 109(1):1-5. PubMed ID: 26394287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.