These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31635194)

  • 1. An Exploration of Machine Learning Methods for Robust Boredom Classification Using EEG and GSR Data.
    Seo J; Laine TH; Sohn KA
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Sensors Based Emotion Recognition While Experiencing Tactile Enhanced Multimedia.
    Raheel A; Majid M; Alnowami M; Anwar SM
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emotion recognition from EEG using higher order crossings.
    Petrantonakis PC; Hadjileontiadis LJ
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):186-97. PubMed ID: 19858033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.
    Jang EH; Park BJ; Park MS; Kim SH; Sohn JH
    J Physiol Anthropol; 2015 Jun; 34(1):25. PubMed ID: 26084816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroencephalography Amplitude Modulation Analysis for Automated Affective Tagging of Music Video Clips.
    Clerico A; Tiwari A; Gupta R; Jayaraman S; Falk TH
    Front Comput Neurosci; 2017; 11():115. PubMed ID: 29367844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data.
    Ding X; Yue X; Zheng R; Bi C; Li D; Yao G
    J Affect Disord; 2019 May; 251():156-161. PubMed ID: 30925266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals.
    Awan AW; Usman SM; Khalid S; Anwar A; Alroobaea R; Hussain S; Almotiri J; Ullah SS; Akram MU
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-modal Approach for Affective Computing.
    Siddharth ; Jung TP; Sejnowski TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():291-294. PubMed ID: 30440395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of Perceived Human Stress using Physiological Signals.
    Arsalan A; Majid M; Anwar SM; Bagci U
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1247-1250. PubMed ID: 31946118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pain Assessment Tool With Electrodermal Activity for Postoperative Patients: Method Validation Study.
    Aqajari SAH; Cao R; Kasaeyan Naeini E; Calderon MD; Zheng K; Dutt N; Liljeberg P; Salanterä S; Nelson AM; Rahmani AM
    JMIR Mhealth Uhealth; 2021 May; 9(5):e25258. PubMed ID: 33949957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Affective Computing on Machine Learning-Based Emotion Recognition Using a Self-Made EEG Device.
    Mai ND; Lee BG; Chung WY
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG rhythm based emotion recognition using multivariate decomposition and ensemble machine learning classifier.
    Vempati R; Sharma LD
    J Neurosci Methods; 2023 Jun; 393():109879. PubMed ID: 37182604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Investigation of Various Machine and Deep Learning Techniques Applied in Automatic Fear Level Detection and Acrophobia Virtual Therapy.
    Bălan O; Moise G; Moldoveanu A; Leordeanu M; Moldoveanu F
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNN and LSTM-Based Emotion Charting Using Physiological Signals.
    Dar MN; Akram MU; Khawaja SG; Pujari AN
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-Based Emotion Classification for Alzheimer's Disease Patients Using Conventional Machine Learning and Recurrent Neural Network Models.
    Seo J; Laine TH; Oh G; Sohn KA
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions.
    Iacoviello D; Petracca A; Spezialetti M; Placidi G
    Comput Methods Programs Biomed; 2015 Dec; 122(3):293-303. PubMed ID: 26358282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of moment-by-moment heart rate and skin conductance changes in the context of varying emotional arousal.
    Shehu HA; Oxner M; Browne WN; Eisenbarth H
    Psychophysiology; 2023 Sep; 60(9):e14303. PubMed ID: 37052214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human stress classification during public speaking using physiological signals.
    Arsalan A; Majid M
    Comput Biol Med; 2021 Jun; 133():104377. PubMed ID: 33866254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An EEG Database and Its Initial Benchmark Emotion Classification Performance.
    Seal A; Reddy PPN; Chaithanya P; Meghana A; Jahnavi K; Krejcar O; Hudak R
    Comput Math Methods Med; 2020; 2020():8303465. PubMed ID: 32831902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG Emotion Classification Network Based on Attention Fusion of Multi-Channel Band Features.
    Zhu X; Rong W; Zhao L; He Z; Yang Q; Sun J; Liu G
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.