These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31635350)

  • 1. Fabrication of 512-Channel Geometrical Passive Breakup Device for High-Throughput Microdroplet Production.
    Kim CM; Kim GM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31635350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 512-Channel Geometric Droplet-Splitting Microfluidic Device by Injection of Premixed Emulsion for Microsphere Production.
    Kim CM; Choi HJ; Kim GM
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32244738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of a T-Shaped Microfluidic Channel Using a Consumer Laser Cutter and Application to Monodisperse Microdroplet Formation.
    Sasaki N; Sugenami E
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Generation of Microdroplets Using Tail Breakup Induced with Multi-Branch Channels.
    Tanaka D; Kajiya S; Shijo S; Yoon DH; Furuya M; Nozaki Y; Fujita H; Sekiguchi T; Shoji S
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34204558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel.
    Kazoe Y; Yamashiro I; Mawatari K; Kitamori T
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO
    Nasser GA; Fath El-Bab AMR; Abdel-Mawgood AL; Mohamed H; Saleh AM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31600884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Valves for Selective on-Chip Droplet Splitting at Multiple Sites.
    Agnihotri SN; Raveshi MR; Bhardwaj R; Neild A
    Langmuir; 2020 Feb; 36(5):1138-1146. PubMed ID: 31968938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designable microfluidic ladder networks from backstepping microflow analysis for mass production of monodisperse microdroplets.
    Deng CF; Su YY; Yang SH; Jiang QR; Xie R; Ju XJ; Liu Z; Pan DW; Wang W; Chu LY
    Lab Chip; 2022 Dec; 22(24):4962-4973. PubMed ID: 36420612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Microfluidic Production of Droplets and Hydrogel Microspheres through Monolithically Integrated Microchannel Plates.
    Wu B; Xu X; Li G; Yang X; Du F; Tan W; Wang J; Dong S; Luo J; Wang X; Cao Z
    Anal Chem; 2023 Sep; 95(36):13586-13595. PubMed ID: 37624148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Production of Monodisperse Functional Microspheres by Multilayer Parallelization of High Aspect Ratio Microfluidic Channels.
    Chung CHY; Cui B; Song R; Liu X; Xu X; Yao S
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31509956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding droplet breakup in a post-array device with sheath-flow configuration.
    Masui S; Kanno Y; Nisisako T
    Lab Chip; 2023 Nov; 23(23):4959-4966. PubMed ID: 37873662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation.
    Ji H; Lee J; Park J; Kim J; Kim HS; Cho Y
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions.
    Opalski AS; Makuch K; Lai YK; Derzsi L; Garstecki P
    Lab Chip; 2019 Mar; 19(7):1183-1192. PubMed ID: 30843018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Droplet Production Speed by Measuring the Droplet Spacing Fluctuations in a Flow-Focusing Microdroplet Generator.
    Zeng W; Xiang D; Fu H
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31775320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of microdroplets using optofluidic signals.
    Shen Z; Zou Y; Chen X
    Lab Chip; 2012 Oct; 12(19):3816-20. PubMed ID: 22885724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.