BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31635372)

  • 1. Selenium Application During Radish (
    McKenzie M; Matich A; Hunter D; Esfandiari A; Trolove S; Chen R; Lill R
    Plants (Basel); 2019 Oct; 8(10):. PubMed ID: 31635372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium Biofortification Effect on Glucosinolate Content of
    Đulović A; Usanović K; Kukoč Modun L; Blažević I
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucosinolate Profiles in Different Organs of 111 Radish Accessions and Candidate Genes Involved in Converting Glucobrassicin to 4-Hydroxyglucobrassicin.
    Wang Y; Wang Q; Sun H; Zhang Z; Qian H; Zhao X; He H; Zhang L
    J Agric Food Chem; 2022 Jan; 70(2):488-497. PubMed ID: 34985889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium treatment differentially affects sulfur metabolism in high and low glucosinolate producing cultivars of broccoli (Brassica oleracea L.).
    McKenzie MJ; Chen RKY; Leung S; Joshi S; Rippon PE; Joyce NI; McManus MT
    Plant Physiol Biochem; 2017 Dec; 121():176-186. PubMed ID: 29126060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish (
    Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.).
    Ishida M; Kakizaki T; Morimitsu Y; Ohara T; Hatakeyama K; Yoshiaki H; Kohori J; Nishio T
    Theor Appl Genet; 2015 Oct; 128(10):2037-46. PubMed ID: 26152572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucosinolate profile variation of growth stages of wild radish (Raphanus raphanistrum).
    Malik MS; Riley MB; Norsworthy JK; Bridges W
    J Agric Food Chem; 2010 Mar; 58(6):3309-15. PubMed ID: 20163113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenium Biofortification in Radish Enhances Nutritional Quality via Accumulation of Methyl-Selenocysteine and Promotion of Transcripts and Metabolites Related to Glucosinolates, Phenolics, and Amino Acids.
    Schiavon M; Berto C; Malagoli M; Trentin A; Sambo P; Dall'Acqua S; Pilon-Smits EA
    Front Plant Sci; 2016; 7():1371. PubMed ID: 27683583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development.
    Nugroho ABD; Han N; Pervitasari AN; Kim DH; Kim J
    Plant Mol Biol; 2020 Jan; 102(1-2):171-184. PubMed ID: 31792713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparative Transcriptome and Metabolome Combined Analysis Reveals the Key Genes and Their Regulatory Model Responsible for Glucoraphasatin Accumulation in Radish Fleshy Taproots.
    Li X; Wang P; Wang J; Wang H; Liu T; Zhang X; Song J; Yang W; Wu C; Yang H; Liu L; Li X
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis.
    Wang J; Qiu Y; Wang X; Yue Z; Yang X; Chen X; Zhang X; Shen D; Wang H; Song J; He H; Li X
    Sci Rep; 2017 Nov; 7(1):16040. PubMed ID: 29167500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component.
    Ishida M; Nagata M; Ohara T; Kakizaki T; Hatakeyama K; Nishio T
    Breed Sci; 2012 Mar; 62(1):63-70. PubMed ID: 23136515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps.
    Agerbirk N; Hansen CC; Kiefer C; Hauser TP; Ørgaard M; Asmussen Lange CB; Cipollini D; Koch MA
    Phytochemistry; 2021 May; 185():112668. PubMed ID: 33743499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 2-Oxoglutarate-Dependent Dioxygenase Mediates the Biosynthesis of Glucoraphasatin in Radish.
    Kakizaki T; Kitashiba H; Zou Z; Li F; Fukino N; Ohara T; Nishio T; Ishida M
    Plant Physiol; 2017 Mar; 173(3):1583-1593. PubMed ID: 28100450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucosinolate profiles and phylogeny in Barbarea compared to other tribe Cardamineae (Brassicaceae) and Reseda (Resedaceae), based on a library of ion trap HPLC-MS/MS data of reference desulfoglucosinolates.
    Agerbirk N; Hansen CC; Olsen CE; Kiefer C; Hauser TP; Christensen S; Jensen KR; Ørgaard M; Pattison DI; Lange CBA; Cipollini D; Koch MA
    Phytochemistry; 2021 May; 185():112658. PubMed ID: 33744557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of Glucosinolates and Volatile Constituents of Six Brassicaceae Seeds with Their Antioxidant Activities Based on Partial Least Squares Regression.
    Khalil N; Gad HA; Al Musayeib NM; Bishr M; Ashour ML
    Plants (Basel); 2022 Apr; 11(9):. PubMed ID: 35567116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops.
    Bhandari SR; Jo JS; Lee JG
    Molecules; 2015 Aug; 20(9):15827-41. PubMed ID: 26334264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression profiles of glucosinolate biosynthetic genes in turnip (Brassica rapa var. rapa) at different developmental stages and effect of transformed flavin-containing monooxygenase genes on hairy root glucosinolate content.
    Yang Y; Hu Y; Yue Y; Pu Y; Yin X; Duan Y; Huang A; Yang Y; Yang Y
    J Sci Food Agric; 2020 Feb; 100(3):1064-1071. PubMed ID: 31713870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Glucosinolate Composition in Brassicaceae Seeds by Germination and Fungal Elicitation.
    Andini S; Dekker P; Gruppen H; Araya-Cloutier C; Vincken JP
    J Agric Food Chem; 2019 Nov; 67(46):12770-12779. PubMed ID: 31652052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production.
    Araki R; Hasumi A; Nishizawa OI; Sasaki K; Kuwahara A; Sawada Y; Totoki Y; Toyoda A; Sakaki Y; Li Y; Saito K; Ogawa T; Hirai MY
    Plant Biotechnol J; 2013 Oct; 11(8):1017-27. PubMed ID: 23910994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.