These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 31635386)
21. Development of a new design of deironing granulated filter for joint removal of iron and ammonium nitrogen from underground water. Yushchenko V; Velyugo Е; Romanovski V Environ Technol; 2024 Jun; 45(14):2735-2742. PubMed ID: 36848050 [TBL] [Abstract][Full Text] [Related]
22. Removal of ammonium-nitrogen from groundwater using a fully passive permeable reactive barrier with oxygen-releasing compound and clinoptilolite. Huang G; Liu F; Yang Y; Deng W; Li S; Huang Y; Kong X J Environ Manage; 2015 May; 154():1-7. PubMed ID: 25700350 [TBL] [Abstract][Full Text] [Related]
23. Ammonium removal of drinking water at low temperature by activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria. Qin W; Li WG; Zhang DY; Huang XF; Song Y Environ Sci Pollut Res Int; 2016 Mar; 23(5):4650-9. PubMed ID: 26527340 [TBL] [Abstract][Full Text] [Related]
24. Mn(II) removal from groundwater with manganese oxide-coated filter media. Piispanen JK; Sallanko JT J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Nov; 45(13):1732-40. PubMed ID: 20924918 [TBL] [Abstract][Full Text] [Related]
25. Pyrolucite fluidized-bed reactor (PFBR): a robust and compact process for removing manganese from groundwater. Dashtban Kenari SL; Barbeau B Water Res; 2014 Feb; 49():475-83. PubMed ID: 24183400 [TBL] [Abstract][Full Text] [Related]
26. Comparison of sand-based water filters for point-of-use arsenic removal in China. Smith K; Li Z; Chen B; Liang H; Zhang X; Xu R; Li Z; Dai H; Wei C; Liu S Chemosphere; 2017 Feb; 168():155-162. PubMed ID: 27780119 [TBL] [Abstract][Full Text] [Related]
27. Enhanced arsenic removal by in situ formed Fe-Mn binary oxide in the aeration-direct filtration process. Wu K; Liu RP; Liu HJ; Lan HC; Qu JH J Hazard Mater; 2012 Nov; 239-240():308-15. PubMed ID: 23017236 [TBL] [Abstract][Full Text] [Related]
28. Effect of pre-aeration on the removal of arsenic and iron from natural groundwater in household based ceramic filters. Shafiquzzaman M J Environ Manage; 2021 Aug; 291():112681. PubMed ID: 33965703 [TBL] [Abstract][Full Text] [Related]
29. Removal of ammonium and manganese from surface water using a MeO Zhang R; Huang T; Wen G; Tian X; Tang Z Environ Technol; 2023 Apr; 44(9):1302-1312. PubMed ID: 34709999 [TBL] [Abstract][Full Text] [Related]
30. Meta-omics profiling of full-scale groundwater rapid sand filters explains stratification of iron, ammonium and manganese removals. Corbera-Rubio F; Laureni M; Koudijs N; Müller S; van Alen T; Schoonenberg F; Lücker S; Pabst M; van Loosdrecht MCM; van Halem D Water Res; 2023 Apr; 233():119805. PubMed ID: 36868119 [TBL] [Abstract][Full Text] [Related]
31. Development of an attached growth reactor for NH₄-N removal at a drinking water supply system in Kathmandu Valley, Nepal. Khanitchaidecha W; Shakya M; Nakano Y; Tanaka Y; Kazama F J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(5):734-43. PubMed ID: 22416868 [TBL] [Abstract][Full Text] [Related]
32. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Nitzsche KS; Lan VM; Trang PT; Viet PH; Berg M; Voegelin A; Planer-Friedrich B; Zahoransky J; Müller SK; Byrne JM; Schröder C; Behrens S; Kappler A Sci Total Environ; 2015 Jan; 502():526-36. PubMed ID: 25300017 [TBL] [Abstract][Full Text] [Related]
33. Dynamics of Fe(II), sulphur and phosphate in pilot-scale constructed wetlands treating a sulphate-rich chlorinated hydrocarbon contaminated groundwater. Wu S; Chen Z; Braeckevelt M; Seeger EM; Dong R; Kästner M; Paschke H; Hahn A; Kayser G; Kuschk P Water Res; 2012 Apr; 46(6):1923-32. PubMed ID: 22289675 [TBL] [Abstract][Full Text] [Related]
34. Optimized removal of dissolved organic carbon and trace organic contaminants during combined ozonation and artificial groundwater recharge. Hübner U; Miehe U; Jekel M Water Res; 2012 Nov; 46(18):6059-68. PubMed ID: 23014565 [TBL] [Abstract][Full Text] [Related]
35. Effect of synthetic iron colloids on the microbiological NH(4)(+) removal process during groundwater purification. Wolthoorn A; Temminghoff EJ; van Riemsdijk WH Water Res; 2004 Apr; 38(7):1884-92. PubMed ID: 15026243 [TBL] [Abstract][Full Text] [Related]
36. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters. Albers CN; Feld L; Ellegaard-Jensen L; Aamand J Water Res; 2015 Oct; 83():61-70. PubMed ID: 26125500 [TBL] [Abstract][Full Text] [Related]
37. The effect of aeration on the removal of wastewater-derived pharmaceutical residues from groundwater - a laboratory study. Burke V; Duennbier U; Massmann G Water Sci Technol; 2013; 67(3):658-66. PubMed ID: 23202573 [TBL] [Abstract][Full Text] [Related]
38. Assessment of arsenic removal efficiency by an iron oxide-coated sand filter process. Callegari A; Ferronato N; Rada EC; Capodaglio AG; Torretta V Environ Sci Pollut Res Int; 2018 Sep; 25(26):26135-26143. PubMed ID: 29971744 [TBL] [Abstract][Full Text] [Related]
39. A cost-effective system for in-situ geological arsenic adsorption from groundwater. Shan H; Ma T; Wang Y; Zhao J; Han H; Deng Y; He X; Dong Y J Contam Hydrol; 2013 Nov; 154():1-9. PubMed ID: 24035830 [TBL] [Abstract][Full Text] [Related]
40. Removal of iron and manganese using biological roughing up flow filtration technology. Pacini VA; María Ingallinella A; Sanguinetti G Water Res; 2005 Nov; 39(18):4463-75. PubMed ID: 16225901 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]