These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade. Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634 [TBL] [Abstract][Full Text] [Related]
4. Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics. Cui E; Li Z; Ma C; Li Q; Lei Y; Lan Y; Yu J; Zhou Z; Li R; Long W; Lin F Eur Radiol; 2020 May; 30(5):2912-2921. PubMed ID: 32002635 [TBL] [Abstract][Full Text] [Related]
5. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Kocak B; Ates E; Durmaz ES; Ulusan MB; Kilickesmez O Eur Radiol; 2019 Sep; 29(9):4765-4775. PubMed ID: 30747300 [TBL] [Abstract][Full Text] [Related]
6. Integrative radiogenomics analysis for predicting molecular features and survival in clear cell renal cell carcinoma. Zeng H; Chen L; Wang M; Luo Y; Huang Y; Ma X Aging (Albany NY); 2021 Mar; 13(7):9960-9975. PubMed ID: 33795526 [TBL] [Abstract][Full Text] [Related]
9. Texture analysis and machine learning algorithms accurately predict histologic grade in small (< 4 cm) clear cell renal cell carcinomas: a pilot study. Haji-Momenian S; Lin Z; Patel B; Law N; Michalak A; Nayak A; Earls J; Loew M Abdom Radiol (NY); 2020 Mar; 45(3):789-798. PubMed ID: 31822969 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis. Erdim C; Yardimci AH; Bektas CT; Kocak B; Koca SB; Demir H; Kilickesmez O Acad Radiol; 2020 Oct; 27(10):1422-1429. PubMed ID: 32014404 [TBL] [Abstract][Full Text] [Related]
11. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870 [TBL] [Abstract][Full Text] [Related]
12. Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Karlo CA; Di Paolo PL; Chaim J; Hakimi AA; Ostrovnaya I; Russo P; Hricak H; Motzer R; Hsieh JJ; Akin O Radiology; 2014 Feb; 270(2):464-71. PubMed ID: 24029645 [TBL] [Abstract][Full Text] [Related]
13. Development of unenhanced CT-based imaging signature for BAP1 mutation status prediction in malignant pleural mesothelioma: Consideration of 2D and 3D segmentation. Xie XJ; Liu SY; Chen JY; Zhao Y; Jiang J; Wu L; Zhang XW; Wu Y; Duan H; He B; Luo H; Han D Lung Cancer; 2021 Jul; 157():30-39. PubMed ID: 34052706 [TBL] [Abstract][Full Text] [Related]
14. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Ding J; Xing Z; Jiang Z; Chen J; Pan L; Qiu J; Xing W Eur J Radiol; 2018 Jun; 103():51-56. PubMed ID: 29803385 [TBL] [Abstract][Full Text] [Related]
15. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
16. Identifying BAP1 Mutations in Clear-Cell Renal Cell Carcinoma by CT Radiomics: Preliminary Findings. Feng Z; Zhang L; Qi Z; Shen Q; Hu Z; Chen F Front Oncol; 2020; 10():279. PubMed ID: 32185138 [TBL] [Abstract][Full Text] [Related]
17. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Lin F; Cui EM; Lei Y; Luo LP Abdom Radiol (NY); 2019 Jul; 44(7):2528-2534. PubMed ID: 30919041 [TBL] [Abstract][Full Text] [Related]
18. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Feng Z; Rong P; Cao P; Zhou Q; Zhu W; Yan Z; Liu Q; Wang W Eur Radiol; 2018 Apr; 28(4):1625-1633. PubMed ID: 29134348 [TBL] [Abstract][Full Text] [Related]
19. Reliability of Single-Slice-Based 2D CT Texture Analysis of Renal Masses: Influence of Intra- and Interobserver Manual Segmentation Variability on Radiomic Feature Reproducibility. Kocak B; Durmaz ES; Kaya OK; Ates E; Kilickesmez O AJR Am J Roentgenol; 2019 Aug; 213(2):377-383. PubMed ID: 31063427 [No Abstract] [Full Text] [Related]
20. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]