These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31635491)
1. Examining the technical feasibility of prostate cancer molecular imaging by transrectal photoacoustic tomography with transurethral illumination. Zhang H; Huang S; Chen Y; Xie W; Zhang M; Pan J; Sato N; Wang X; Wu D; Cheng Q Exp Biol Med (Maywood); 2020 Feb; 245(4):313-320. PubMed ID: 31635491 [TBL] [Abstract][Full Text] [Related]
2. Targeted Nanobubbles Carrying Indocyanine Green for Ultrasound, Photoacoustic and Fluorescence Imaging of Prostate Cancer. Wang Y; Lan M; Shen D; Fang K; Zhu L; Liu Y; Hao L; Li P Int J Nanomedicine; 2020; 15():4289-4309. PubMed ID: 32606678 [TBL] [Abstract][Full Text] [Related]
4. Multifunctional nanobubbles carrying indocyanine green and paclitaxel for molecular imaging and the treatment of prostate cancer. Lan M; Zhu L; Wang Y; Shen D; Fang K; Liu Y; Peng Y; Qiao B; Guo Y J Nanobiotechnology; 2020 Sep; 18(1):121. PubMed ID: 32883330 [TBL] [Abstract][Full Text] [Related]
5. Is tissue harmonic ultrasound imaging (THI) of the prostatic urethra and rectum superior to brightness (B) mode imaging? An observer study. Sandhu GK; Angyalfi S; Dunscombe PB; Khan RF Phys Med; 2014 Sep; 30(6):662-8. PubMed ID: 24792688 [TBL] [Abstract][Full Text] [Related]
6. Shape analysis of the prostate: establishing imaging specifications for the design of a transurethral imaging device for prostate brachytherapy guidance. Holmes DR; Davis BJ; Goulet CC; Wilson TM; Mynderse LA; Furutani KM; Camp JJ; Robb RA Brachytherapy; 2014; 13(5):465-70. PubMed ID: 24962657 [TBL] [Abstract][Full Text] [Related]
7. In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes. Koo J; Jeon M; Oh Y; Kang HW; Kim J; Kim C; Oh J Phys Med Biol; 2012 Dec; 57(23):7853-62. PubMed ID: 23151772 [TBL] [Abstract][Full Text] [Related]
8. Targeted imaging of orthotopic prostate cancer by using clinical transformable photoacoustic molecular probe. Qiu C; Bai Y; Yin T; Miao X; Gao R; Zhou H; Ren J; Song L; Liu C; Zheng H; Zheng R BMC Cancer; 2020 May; 20(1):419. PubMed ID: 32410590 [TBL] [Abstract][Full Text] [Related]
9. Indocyanine Green J Aggregates in Polymersomes for Near-Infrared Photoacoustic Imaging. Changalvaie B; Han S; Moaseri E; Scaletti F; Truong L; Caplan R; Cao A; Bouchard R; Truskett TM; Sokolov KV; Johnston KP ACS Appl Mater Interfaces; 2019 Dec; 11(50):46437-46450. PubMed ID: 31804795 [TBL] [Abstract][Full Text] [Related]
10. Photoacoustic imaging in prostate cancer: A new paradigm for diagnosis and management. Tajaldeen A; Alrashidi M; Alsaadi MJ; Alghamdi SS; Alshammari H; Alsleem H; Jafer M; Aljondi R; Alqahtani S; Alotaibi A; Alzandi AM; Alahmari AM Photodiagnosis Photodyn Ther; 2024 Jun; 47():104225. PubMed ID: 38821240 [TBL] [Abstract][Full Text] [Related]
12. Applications of transrectal ultrasound in prostate cancer. Harvey CJ; Pilcher J; Richenberg J; Patel U; Frauscher F Br J Radiol; 2012 Nov; 85 Spec No 1(Spec Iss 1):S3-17. PubMed ID: 22844031 [TBL] [Abstract][Full Text] [Related]
13. A comparison of treatment planning techniques for low-dose-rate (LDR) prostate brachytherapy. Connolly D; Sands G; Winter H; Foley MJ; Kleefeld C Brachytherapy; 2021; 20(2):410-419. PubMed ID: 33234407 [TBL] [Abstract][Full Text] [Related]
14. High-dose-rate prostate brachytherapy based on registered transrectal ultrasound and in-room cone-beam CT images. Even AJ; Nuver TT; Westendorp H; Hoekstra CJ; Slump CH; Minken AW Brachytherapy; 2014; 13(2):128-36. PubMed ID: 24041955 [TBL] [Abstract][Full Text] [Related]
15. Peripheral zone hypoechoic lesions of the prostate: evaluation with contrast-enhanced gray scale transrectal ultrasonography. Tang J; Yang JC; Li Y; Li J; Shi H J Ultrasound Med; 2007 Dec; 26(12):1671-9. PubMed ID: 18029918 [TBL] [Abstract][Full Text] [Related]