These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31635723)

  • 1. Modified tunicate nanocellulose liquid crystalline fiber as closed loop for recycling platinum-group metals.
    Hong HJ; Yu H; Hong S; Hwang JY; Kim SM; Park MS; Jeong HS
    Carbohydr Polym; 2020 Jan; 228():115424. PubMed ID: 31635723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of platinum from waste effluent using polyethyleneimine-modified nanocelluloses: Effects of the cellulose source and type.
    Hong HJ; Yu H; Park M; Jeong HS
    Carbohydr Polym; 2019 Apr; 210():167-174. PubMed ID: 30732749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metals smelting-collection method for recycling of platinum group metals from waste catalysts: A mini review.
    Liu C; Sun S; Zhu X; Tu G
    Waste Manag Res; 2021 Jan; 39(1):43-52. PubMed ID: 33198602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified cellulose nanofibril aerogel: Tunable catalyst support for treatment of 4-Nitrophenol from wastewater.
    Yu H; Oh S; Han Y; Lee S; Jeong HS; Hong HJ
    Chemosphere; 2021 Dec; 285():131448. PubMed ID: 34329132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic polymer-immobilized polysulfone-based fibers as high performance sorbents for Pt(IV) recovery from acidic solutions.
    Won SW; Kim S; Kotte P; Lim A; Yun YS
    J Hazard Mater; 2013 Dec; 263 Pt 2():391-7. PubMed ID: 24225583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous Metal Oxide-Graphene Thorn-Bush Single Fiber as a Freestanding Chemiresistor.
    Jang JS; Yu H; Choi SJ; Koo WT; Lee J; Kim DH; Kang JY; Jeong YJ; Jeong H; Kim ID
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10208-10217. PubMed ID: 30785264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on management of waste three-way catalysts and strategies for recovery of platinum group metals from them.
    Sun S; Jin C; He W; Li G; Zhu H; Huang J
    J Environ Manage; 2022 Mar; 305():114383. PubMed ID: 34968938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration of precious metals during their recovery from electronic waste.
    Cayumil R; Khanna R; Rajarao R; Mukherjee PS; Sahajwalla V
    Waste Manag; 2016 Nov; 57():121-130. PubMed ID: 26712661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of precious metals.
    Mack C; Wilhelmi B; Duncan JR; Burgess JE
    Biotechnol Adv; 2007; 25(3):264-71. PubMed ID: 17293076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing Economic Modulation of Future Critical Materials Use: The Case of Automotive-Related Platinum Group Metals.
    Zhang J; Everson MP; Wallington TJ; Field FR; Roth R; Kirchain RE
    Environ Sci Technol; 2016 Jul; 50(14):7687-95. PubMed ID: 27285880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of Platinum Group Metals from Spent Automotive Catalysts Using Lithium Salts and Hydrochloric Acid.
    Kuzuhara S; Ota M; Kasuya R
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward the Recovery of Platinum Group Metals from a Spent Automotive Catalyst with Supported Ionic Liquid Phases.
    Lanaridi O; Sahoo AR; Limbeck A; Naghdi S; Eder D; Eitenberger E; Csendes Z; Schnürch M; Bica-Schröder K
    ACS Sustain Chem Eng; 2021 Jan; 9(1):375-386. PubMed ID: 33585084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy.
    Trinh HB; Lee JC; Suh YJ; Lee J
    Waste Manag; 2020 Aug; 114():148-165. PubMed ID: 32673979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimethylamine-modified waste paper for the recovery of precious metals.
    Adhikari CR; Parajuli D; Kawakita H; Inoue K; Ohto K; Harada H
    Environ Sci Technol; 2008 Aug; 42(15):5486-91. PubMed ID: 18754465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Functionalized Electrospun Titania Nanofibers for the Scavenging and Recycling of Precious Metal Ions.
    Dai Y; Formo E; Li H; Xue J; Xia Y
    ChemSusChem; 2016 Oct; 9(20):2912-2916. PubMed ID: 27658705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of electrolyte reuse on metal recovery from waste CPU slots by slurry electrolysis.
    Yi X; Qi Y; Li F; Shu J; Sun Z; Sun S; Chen M; Pu S
    Waste Manag; 2019 Jul; 95():370-376. PubMed ID: 31351623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biorefining of platinum group metals from model waste solutions into catalytically active bimetallic nanoparticles.
    Murray AJ; Zhu J; Wood J; Macaskie LE
    Microb Biotechnol; 2018 Mar; 11(2):359-368. PubMed ID: 29282886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of precious metal oxides relevant to heterogeneous catalysis.
    Kurzman JA; Misch LM; Seshadri R
    Dalton Trans; 2013 Oct; 42(41):14653-67. PubMed ID: 24008693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake and bioaccumulation of platinum group metals (Pd, Pt, Rh) from automobile catalytic converter materials by the zebra mussel (Dreissena polymorpha).
    Zimmermann S; Messerschmidt J; von Bohlen A; Sures B
    Environ Res; 2005 Jun; 98(2):203-9. PubMed ID: 15820726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precious metals and rare earth elements in municipal solid waste--sources and fate in a Swiss incineration plant.
    Morf LS; Gloor R; Haag O; Haupt M; Skutan S; Di Lorenzo F; Böni D
    Waste Manag; 2013 Mar; 33(3):634-44. PubMed ID: 23085306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.