BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31635743)

  • 1. Cellulose-g-poly-(acrylamide-co-acrylic acid) polymeric bioadsorbent for the removal of toxic inorganic pollutants from wastewaters.
    Guleria A; Kumari G; Lima EC
    Carbohydr Polym; 2020 Jan; 228():115396. PubMed ID: 31635743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid removal of Cr(III) from high-salinity wastewater by cellulose-g-poly-(acrylamide-co-sulfonic acid) polymeric bio-adsorbent.
    Liu J; Chen Y; Jiang S; Huang J; Lv Y; Liu Y; Liu M
    Carbohydr Polym; 2021 Oct; 270():118356. PubMed ID: 34364601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater.
    Singha AS; Guleria A
    Int J Biol Macromol; 2014 Jun; 67():409-17. PubMed ID: 24704540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer.
    Sasmal D; Maity J; Kolya H; Tripathy T
    Int J Biol Macromol; 2017 Apr; 97():585-597. PubMed ID: 28109808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacious adsorption of divalent nickel ions over sodium alginate-g-poly(acrylamide)/hydrolyzed Luffa cylindrica-CoFe
    Alizadeh M; Peighambardoust SJ; Foroutan R
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127750. PubMed ID: 38287592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, characterization and column adsorption properties of gum ghatti and water hyacianth derived cellulose grafted poly(vinyl sulfonic acid-co-acrylamide) composites.
    Maity J; Ray SK
    Int J Biol Macromol; 2024 May; 268(Pt 1):131652. PubMed ID: 38649075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of heavy metal ions from wastewater by a novel HEA/AMPS copolymer hydrogel: preparation, characterization, and mechanism.
    Li Z; Wang Y; Wu N; Chen Q; Wu K
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1511-25. PubMed ID: 22614052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalized cellulose with hydroxyethyl methacrylate and glycidyl methacrylate for metal ions and dye adsorption applications.
    Sharma RK; Kumar R
    Int J Biol Macromol; 2019 Aug; 134():704-721. PubMed ID: 31082422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Cellulose-Poly(Acrylic Acid) Using Sugarcane Bagasse Extracted Cellulose Fibres for the Removal of Heavy Metal Ions.
    Li F; Xie Z; Wen J; Tang T; Jiang L; Hu G; Li M
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of graft copolymers of chitosan with NIPAM and binary monomers for removal of Cr(VI), Cu(II) and Fe(II) metal ions from aqueous solutions.
    Lalita ; Singh AP; Sharma RK
    Int J Biol Macromol; 2017 Jun; 99():409-426. PubMed ID: 28263811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Pb
    Mazumder MAJ; Chowdhury IR; Chowdhury S; Al-Ahmed A
    Environ Sci Pollut Res Int; 2022 Aug; 29(36):54432-54447. PubMed ID: 35304716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graft copolymerization of cellulose acetate for removal and recovery of lead ions from wastewater.
    Abdelwahab NA; Ammar NS; Ibrahim HS
    Int J Biol Macromol; 2015 Aug; 79():913-22. PubMed ID: 26014145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion.
    Srivastava N; Thakur AK; Shahi VK
    Carbohydr Polym; 2016 Jan; 136():1315-22. PubMed ID: 26572476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The promise of a specially-designed graft copolymer of acrylic acid onto cellulose as selective sorbent for heavy metal ions.
    Essawy HA; Mohamed MF; Ammar NS; Ibrahim HS
    Int J Biol Macromol; 2017 Oct; 103():261-267. PubMed ID: 28526344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crown ether modification of starch for adsorption of heavy metals from synthetic wastewater.
    Ibrahim BM; Fakhre NA
    Int J Biol Macromol; 2019 Feb; 123():70-80. PubMed ID: 30439424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a cross-linked cellulose-based amine polymer and its application in wastewater purification.
    Hamed O; Lail BA; Deghles A; Qasem B; Azzaoui K; Obied AA; Algarra M; Jodeh S
    Environ Sci Pollut Res Int; 2019 Sep; 26(27):28080-28091. PubMed ID: 31363973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose.
    Kenawy IM; Hafez MAH; Ismail MA; Hashem MA
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1538-1549. PubMed ID: 28988841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High crosslinked sodium carboxyl methylstarch-g-poly (acrylic acid-co-acrylamide) resin for heavy metal adsorption: its characteristics and mechanisms.
    Zhang M; Yang P; Lan G; Liu Y; Cai Q; Xi J
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38617-38630. PubMed ID: 32623681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel cellulose-dioctyl phthate-baker's yeast biosorbent for removal of Co(II), Cu(II), Cd(II), Hg(II) and Pb(II).
    Mahmoud ME; Yakout AA; Abed El Aziz MT; Osman MM; Abdel-Fattah TM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(10):1072-81. PubMed ID: 26121022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxymethyl cellulose-based cryogels for efficient heavy metal capture: Aluminum-mediated assembly process and sorption mechanism.
    Li SS; Song YL; Yang HR; An QD; Xiao ZY; Zhai SR
    Int J Biol Macromol; 2020 Dec; 164():3275-3286. PubMed ID: 32853608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.