These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31635945)

  • 1. A finite element simulation method to evaluate the crimpability of curved stents.
    Praveen Kumar G; Louis Commillus A; Cui F
    Med Eng Phys; 2019 Dec; 74():162-165. PubMed ID: 31635945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and evaluation of the crimping of a hooked self-expandable caval valve stent for the treatment of tricuspid regurgitation.
    Praveen Kumar G; Liang Leo H; Cui F
    Comput Methods Biomech Biomed Engin; 2019 Apr; 22(5):533-546. PubMed ID: 30773049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An argument for the use of multiple segment stents in curved arteries.
    Kasiri S; Kelly DJ
    J Biomech Eng; 2011 Aug; 133(8):084501. PubMed ID: 21950903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stent expansion in curved vessel and their interactions: a finite element analysis.
    Wu W; Wang WQ; Yang DZ; Qi M
    J Biomech; 2007; 40(11):2580-5. PubMed ID: 17198706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated Bench Testing to Evaluate the Mechanical Performance of New Carotid Stents.
    Kumar GP; Kabinejadian F; Liu J; Ho P; Leo HL; Cui F
    Artif Organs; 2017 Mar; 41(3):267-272. PubMed ID: 27357068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the importance of modeling stent procedure for predicting arterial mechanics.
    Zhao S; Gu L; Froemming SR
    J Biomech Eng; 2012 Dec; 134(12):121005. PubMed ID: 23363207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-expandable stent for thrombus removal modeling: Solid or beam finite elements?
    Luraghi G; Bridio S; Migliavacca F; Rodriguez Matas JF
    Med Eng Phys; 2022 Aug; 106():103836. PubMed ID: 35926960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the requirements of self-expandable stents for heart valve replacement: Radial force, hoop force and equilibrium.
    Cabrera MS; Oomens CW; Baaijens FP
    J Mech Behav Biomed Mater; 2017 Apr; 68():252-264. PubMed ID: 28219851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deployment of stent grafts in curved aneurysmal arteries: toward a predictive numerical tool.
    Perrin D; Demanget N; Badel P; Avril S; Orgéas L; Geindreau C; Albertini JN
    Int J Numer Method Biomed Eng; 2015 Jan; 31(1):e02698. PubMed ID: 25399927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the importance of modeling balloon folding, pleating, and stent crimping: An FE study comparing experimental inflation tests.
    Geith MA; Swidergal K; Hochholdinger B; Schratzenstaller TG; Wagner M; Holzapfel GA
    Int J Numer Method Biomed Eng; 2019 Nov; 35(11):e3249. PubMed ID: 31400057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method.
    Gervaso F; Capelli C; Petrini L; Lattanzio S; Di Virgilio L; Migliavacca F
    J Biomech; 2008; 41(6):1206-12. PubMed ID: 18374340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning.
    Kumar A; Bhatnagar N
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study of crimping and expansion of bioresorbable polymeric stents.
    Qiu TY; Song M; Zhao LG
    Mech Time Depend Mater; 2018; 22(2):273-290. PubMed ID: 29962898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent.
    Debusschere N; Segers P; Dubruel P; Verhegghe B; De Beule M
    J Biomech; 2015 Jul; 48(10):2012-8. PubMed ID: 25907549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of NiTi self-expandable heart valve stent.
    Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element comparison of performance related characteristics of balloon expandable stents.
    Donnelly EW; Bruzzi MS; Connolley T; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):103-10. PubMed ID: 18651276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the deformation behavior of stent with nonuniform Poisson's ratio distribution for curved artery.
    Han Y; Lu W
    J Mech Behav Biomed Mater; 2018 Dec; 88():442-452. PubMed ID: 30218973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution.
    Bukala J; Kwiatkowski P; Malachowski J
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.