BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31636124)

  • 1. Gα-13 induces C
    Lim WK; Chai X; Ghosh S; Ray D; Wang M; Rasheed SAK; Casey PJ
    J Biol Chem; 2019 Nov; 294(48):18192-18206. PubMed ID: 31636124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GNA13 promotes tumor growth and angiogenesis by upregulating CXC chemokines via the NF-κB signaling pathway in colorectal cancer cells.
    Zhang Z; Tan X; Luo J; Cui B; Lei S; Si Z; Shen L; Yao H
    Cancer Med; 2018 Nov; 7(11):5611-5620. PubMed ID: 30267476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-182 and microRNA-200a control G-protein subunit α-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells.
    Rasheed SAK; Teo CR; Beillard EJ; Voorhoeve PM; Casey PJ
    J Biol Chem; 2013 Mar; 288(11):7986-7995. PubMed ID: 23329838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The GNA13-RhoA signaling axis suppresses expression of tumor protective Kallikreins.
    Teo CR; Casey PJ; Rasheed SA
    Cell Signal; 2016 Oct; 28(10):1479-88. PubMed ID: 27424208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation.
    Kukreja P; Abdel-Mageed AB; Mondal D; Liu K; Agrawal KC
    Cancer Res; 2005 Nov; 65(21):9891-8. PubMed ID: 16267013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-protein alpha-s and -12 subunits are involved in androgen-stimulated PI3K activation and androgen receptor transactivation in prostate cancer cells.
    Liu J; Youn H; Yang J; Du N; Liu J; Liu H; Li B
    Prostate; 2011 Sep; 71(12):1276-86. PubMed ID: 21308712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High C-X-C motif chemokine 5 expression is associated with malignant phenotypes of prostate cancer cells via autocrine and paracrine pathways.
    Qi Y; Zhao W; Li M; Shao M; Wang J; Sui H; Yu H; Shao W; Gui S; Li J; Jia X; Jiang D; Li Y; Zhang P; Wang S; Wang W
    Int J Oncol; 2018 Jul; 53(1):358-370. PubMed ID: 29749439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GNA13 expression promotes drug resistance and tumor-initiating phenotypes in squamous cell cancers.
    Rasheed SAK; Leong HS; Lakshmanan M; Raju A; Dadlani D; Chong FT; Shannon NB; Rajarethinam R; Skanthakumar T; Tan EY; Hwang JSG; Lim KH; Tan DS; Ceppi P; Wang M; Tergaonkar V; Casey PJ; Iyer NG
    Oncogene; 2018 Mar; 37(10):1340-1353. PubMed ID: 29255247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PPM1A is a RelA phosphatase with tumor suppressor-like activity.
    Lu X; An H; Jin R; Zou M; Guo Y; Su PF; Liu D; Shyr Y; Yarbrough WG
    Oncogene; 2014 May; 33(22):2918-27. PubMed ID: 23812431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKD2 and PKD3 promote prostate cancer cell invasion by modulating NF-κB- and HDAC1-mediated expression and activation of uPA.
    Zou Z; Zeng F; Xu W; Wang C; Ke Z; Wang QJ; Deng F
    J Cell Sci; 2012 Oct; 125(Pt 20):4800-11. PubMed ID: 22797919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer.
    Zerbini LF; Wang Y; Cho JY; Libermann TA
    Cancer Res; 2003 May; 63(9):2206-15. PubMed ID: 12727841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mullerian-inhibiting substance induces Gro-beta expression in breast cancer cells through a nuclear factor-kappaB-dependent and Smad1-dependent mechanism.
    Gupta V; Yeo G; Kawakubo H; Rangnekar V; Ramaswamy P; Hayashida T; MacLaughlin DT; Donahoe PK; Maheswaran S
    Cancer Res; 2007 Mar; 67(6):2747-56. PubMed ID: 17363596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic AMP-responsive element binding protein- and nuclear factor-kappaB-regulated CXC chemokine gene expression in lung carcinogenesis.
    Sun H; Chung WC; Ryu SH; Ju Z; Tran HT; Kim E; Kurie JM; Koo JS
    Cancer Prev Res (Phila); 2008 Oct; 1(5):316-28. PubMed ID: 19138976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone.
    Roca H; Jones JD; Purica MC; Weidner S; Koh AJ; Kuo R; Wilkinson JE; Wang Y; Daignault-Newton S; Pienta KJ; Morgan TM; Keller ET; Nör JE; Shea LD; McCauley LK
    J Clin Invest; 2018 Jan; 128(1):248-266. PubMed ID: 29202471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemokine-cytokine cross-talk. The ELR+ CXC chemokine LIX (CXCL5) amplifies a proinflammatory cytokine response via a phosphatidylinositol 3-kinase-NF-kappa B pathway.
    Chandrasekar B; Melby PC; Sarau HM; Raveendran M; Perla RP; Marelli-Berg FM; Dulin NO; Singh IS
    J Biol Chem; 2003 Feb; 278(7):4675-86. PubMed ID: 12468547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a negative regulatory cis-element in the enhancer core region of the prostate-specific antigen promoter: implications for intersection of androgen receptor and nuclear factor-kappaB signalling in prostate cancer cells.
    Cinar B; Yeung F; Konaka H; Mayo MW; Freeman MR; Zhau HE; Chung LW
    Biochem J; 2004 Apr; 379(Pt 2):421-31. PubMed ID: 14715080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormone-independent prostate cancer by early growth response-1/snail signaling pathway.
    Kuo PL; Chen YH; Chen TC; Shen KH; Hsu YL
    J Cell Physiol; 2011 May; 226(5):1224-31. PubMed ID: 20945384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A S100A14-CCL2/CXCL5 signaling axis drives breast cancer metastasis.
    Li X; Wang M; Gong T; Lei X; Hu T; Tian M; Ding F; Ma F; Chen H; Liu Z
    Theranostics; 2020; 10(13):5687-5703. PubMed ID: 32483412
    [No Abstract]   [Full Text] [Related]  

  • 19. Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappaB activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes.
    Shukla S; Gupta S
    Clin Cancer Res; 2004 May; 10(9):3169-78. PubMed ID: 15131058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. c-Jun Contributes to Transcriptional Control of GNA12 Expression in Prostate Cancer Cells.
    Udayappan UK; Casey PJ
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28394299
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.