These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 31636218)
1. Data-driven discovery of coordinates and governing equations. Champion K; Lusch B; Kutz JN; Brunton SL Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22445-22451. PubMed ID: 31636218 [TBL] [Abstract][Full Text] [Related]
2. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Brunton SL; Proctor JL; Kutz JN Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3932-7. PubMed ID: 27035946 [TBL] [Abstract][Full Text] [Related]
3. Distilling identifiable and interpretable dynamic models from biological data. Massonis G; Villaverde AF; Banga JR PLoS Comput Biol; 2023 Oct; 19(10):e1011014. PubMed ID: 37851682 [TBL] [Abstract][Full Text] [Related]
4. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Kaiser E; Kutz JN; Brunton SL Proc Math Phys Eng Sci; 2018 Nov; 474(2219):20180335. PubMed ID: 30839858 [TBL] [Abstract][Full Text] [Related]
5. Physics-informed learning of governing equations from scarce data. Chen Z; Liu Y; Sun H Nat Commun; 2021 Oct; 12(1):6136. PubMed ID: 34675223 [TBL] [Abstract][Full Text] [Related]
6. Discovery of nonlinear dynamical systems using a Runge-Kutta inspired dictionary-based sparse regression approach. Goyal P; Benner P Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20210883. PubMed ID: 35756880 [TBL] [Abstract][Full Text] [Related]
8. Sparse identification of nonlinear dynamics for rapid model recovery. Quade M; Abel M; Nathan Kutz J; Brunton SL Chaos; 2018 Jun; 28(6):063116. PubMed ID: 29960401 [TBL] [Abstract][Full Text] [Related]
12. Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method. Purnomo A; Hayashibe M Sci Rep; 2023 May; 13(1):7919. PubMed ID: 37193704 [TBL] [Abstract][Full Text] [Related]
13. Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization. Lejarza F; Baldea M Sci Rep; 2022 Jul; 12(1):11836. PubMed ID: 35821394 [TBL] [Abstract][Full Text] [Related]
14. Sparsifying priors for Bayesian uncertainty quantification in model discovery. Hirsh SM; Barajas-Solano DA; Kutz JN R Soc Open Sci; 2022 Feb; 9(2):211823. PubMed ID: 35223066 [TBL] [Abstract][Full Text] [Related]
15. Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control. Fasel U; Kutz JN; Brunton BW; Brunton SL Proc Math Phys Eng Sci; 2022 Apr; 478(2260):20210904. PubMed ID: 35450025 [TBL] [Abstract][Full Text] [Related]
16. Modeling of dynamical systems through deep learning. Rajendra P; Brahmajirao V Biophys Rev; 2020 Nov; 12(6):1311-20. PubMed ID: 33222032 [TBL] [Abstract][Full Text] [Related]
17. Discovery of Physics From Data: Universal Laws and Discrepancies. de Silva BM; Higdon DM; Brunton SL; Kutz JN Front Artif Intell; 2020; 3():25. PubMed ID: 33733144 [TBL] [Abstract][Full Text] [Related]