These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31636300)

  • 1. Design of a Broadband Solar Thermal Absorber Using a Deep Neural Network and Experimental Demonstration of Its Performance.
    Seo J; Jung PH; Kim M; Yang S; Lee I; Lee J; Lee H; Lee BJ
    Sci Rep; 2019 Oct; 9(1):15028. PubMed ID: 31636300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband and Efficient Metamaterial Absorber Design Based on Gold-MgF2-Tungsten Hybrid Structure for Solar Thermal Application.
    Armghan A; Alsharari M; Aliqab K
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance optimization of energy-efficient solar absorbers for thermal energy harvesting in modern industrial environments using a solar deep learning model.
    Armghan A; Logeshwaran J; Raja S; Aliqab K; Alsharari M; Patel SK
    Heliyon; 2024 Feb; 10(4):e26371. PubMed ID: 38404765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array.
    Yi Z; Li J; Lin J; Qin F; Chen X; Yao W; Liu Z; Cheng S; Wu P; Li H
    Nanoscale; 2020 Nov; 12(45):23077-23083. PubMed ID: 33179661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals.
    Li H; Niu J; Zhang C; Niu G; Ye X; Xie C
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and Composition Design of Low-Alloy Steel's Mechanical Properties Based on Neural Networks and Genetic Algorithms.
    Zhu Z; Liang Y; Zou J
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Offloading in Mobile Edge with Comprehensive and Energy Efficient Cost Function: A Deep Learning Approach.
    Abbas ZH; Ali Z; Abbas G; Jiao L; Bilal M; Suh DY; Piran MJ
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Assessment of Solar Radiation by Machine Learning and Deep Neural Network Models Using Data Provided by the COMS MI Geostationary Satellite: A Case Study in South Korea.
    Yeom JM; Park S; Chae T; Kim JY; Lee CS
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31060305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband Solar Metamaterial Absorbers Empowered by Transformer-Based Deep Learning.
    Chen W; Gao Y; Li Y; Yan Y; Ou JY; Ma W; Zhu J
    Adv Sci (Weinh); 2023 May; 10(13):e2206718. PubMed ID: 36852630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm.
    Cai H; Sun Y; Wang X; Zhan S
    Opt Express; 2020 May; 28(10):15347-15359. PubMed ID: 32403564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility.
    Jahan T; Dash T; Arman SE; Inum R; Islam S; Jamal L; Yanik AA; Habib A
    Nanoscale; 2024 Sep; 16(35):16641-16651. PubMed ID: 39171500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-directed online machine learning for topology optimization.
    Deng C; Wang Y; Qin C; Fu Y; Lu W
    Nat Commun; 2022 Jan; 13(1):388. PubMed ID: 35046415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural network approach for fast, automated quantification of DIR performance.
    Neylon J; Min Y; Low DA; Santhanam A
    Med Phys; 2017 Aug; 44(8):4126-4138. PubMed ID: 28477340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrabroadband metal-black absorbers and the performance simulations based on a three-dimensional cluster-structure model.
    Hao Y; Yang S; Li Z; Wang X; Zhang J; Liao Y; Li D
    Opt Express; 2021 Mar; 29(6):8510-8522. PubMed ID: 33820297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superlattice photonic crystal as broadband solar absorber for high temperature operation.
    Rinnerbauer V; Shen Y; Joannopoulos JD; Soljačić M; Schäffler F; Celanovic I
    Opt Express; 2014 Dec; 22 Suppl 7():A1895-906. PubMed ID: 25607503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CGBVS-DNN: Prediction of Compound-protein Interactions Based on Deep Learning.
    Hamanaka M; Taneishi K; Iwata H; Ye J; Pei J; Hou J; Okuno Y
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27515489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.