These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31636321)

  • 21. The influence of molecular-scale roughness on the surface spreading of an aqueous nanodrop.
    Daub CD; Wang J; Kudesia S; Bratko D; Luzar A
    Faraday Discuss; 2010; 146():67-77; discussion 79-101, 395-401. PubMed ID: 21043415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling high-speed droplet splashing and superspreading behavior on anisotropic superhydrophobic leaf surfaces by ecofriendly Pseudogemini surfactants.
    Xin J; Jia K; Yu L; Li H; Ning J; Zheng X; Wu H; Liu X; Huang L; Wen W
    Pest Manag Sci; 2023 Sep; 79(9):3090-3102. PubMed ID: 36994611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic Contact Angles and Mechanisms of Motion of Water Droplets Moving on Nanopillared Superhydrophobic Surfaces: A Molecular Dynamics Simulation Study.
    Li H; Yan T; Fichthorn KA; Yu S
    Langmuir; 2018 Aug; 34(34):9917-9926. PubMed ID: 30059231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces.
    Delele MA; Nuyttens D; Duga AT; Ambaw A; Lebeau F; Nicolai BM; Verboven P
    Soft Matter; 2016 Sep; 12(34):7195-211. PubMed ID: 27501228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Wetting on Drop Splashing of Newtonian Fluids and Blood.
    de Goede TC; Laan N; de Bruin KG; Bonn D
    Langmuir; 2018 May; 34(18):5163-5168. PubMed ID: 29235874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting the splash of a droplet impinging on solid substrates.
    Yonemoto Y; Tashiro K; Shimizu K; Kunugi T
    Sci Rep; 2022 Mar; 12(1):5093. PubMed ID: 35332194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of surface structure and chemistry on water droplet splashing.
    Koch K; Grichnik R
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Liquid drop splashing on smooth, rough, and textured surfaces.
    Xu L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056316. PubMed ID: 17677173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How micropatterns and air pressure affect splashing on surfaces.
    Tsai P; van der Veen RC; van de Raa M; Lohse D
    Langmuir; 2010 Oct; 26(20):16090-5. PubMed ID: 20860398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From splashing to bouncing: The influence of viscosity on the impact of suspension droplets on a solid surface.
    Klein Schaarsberg MH; Peters IR; Stern M; Dodge K; Zhang WW; Jaeger HM
    Phys Rev E; 2016 Jun; 93(6):062609. PubMed ID: 27415322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The surface morphology and dynamic impact properties with rebounding and splashing of water droplet on phase separation and breath figure assisted electrospinning films.
    Kong Q; Li Z; Ren X; Gu H; Ma W
    Des Monomers Polym; 2021 May; 24(1):162-172. PubMed ID: 34104074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revisiting the supplementary relationship of dynamic contact angles measured by sessile-droplet and captive-bubble methods: Role of surface roughness.
    Sarkar S; Roy T; Roy A; Moitra S; Ganguly R; Megaridis CM
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):690-697. PubMed ID: 32814192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces.
    Dash S; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042402. PubMed ID: 24827255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adhesion of liquid droplets to rough surfaces.
    Li R; Alizadeh A; Shang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041608. PubMed ID: 21230288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water droplet impact on elastic superhydrophobic surfaces.
    Weisensee PB; Tian J; Miljkovic N; King WP
    Sci Rep; 2016 Jul; 6():30328. PubMed ID: 27461899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dynamics of impacting water droplets on alkanethiol self-assembled monolayers with co-adsorbed CH3 and CO2H terminal groups.
    Ukiwe C; Mansouri A; Kwok DY
    J Colloid Interface Sci; 2005 May; 285(2):760-8. PubMed ID: 15837495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wetting failure of hydrophilic surfaces promoted by surface roughness.
    Zhao MH; Chen XP; Wang Q
    Sci Rep; 2014 Jun; 4():5376. PubMed ID: 24948390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Splash control of drop impacts with geometric targets.
    Juarez G; Gastopoulos T; Zhang Y; Siegel ML; Arratia PE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026319. PubMed ID: 22463329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contact time of impacting droplets on a superhydrophobic surface with tunable curvature and groove orientation.
    Guo C; Liu L; Liu C
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34814124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.