These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31636423)

  • 41. Electrochemical Conversion of CO
    Tackett BM; Lee JH; Chen JG
    Acc Chem Res; 2020 Aug; 53(8):1535-1544. PubMed ID: 32662622
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ag-decorated GaN for high-efficiency photoreduction of carbon dioxide into tunable syngas under visible light.
    Huang W; Zhou D; Lee J; Sun J; Zhang S; Xu H; Luo J; Liu X
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34547735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.
    Singh MR; Clark EL; Bell AT
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):E6111-8. PubMed ID: 26504215
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical Conversion of CO
    He Q; Liu D; Lee JH; Liu Y; Xie Z; Hwang S; Kattel S; Song L; Chen JG
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):3033-3037. PubMed ID: 31826317
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Iron-Doped BaMnO
    Haribal VP; He F; Mishra A; Li F
    ChemSusChem; 2017 Sep; 10(17):3402-3408. PubMed ID: 28782914
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic Multilayers for Efficient Solar Water Oxidation through Catalyst Loading and Surface-State Passivation of BiVO
    Bae S; Kim H; Jeon D; Ryu J
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7990-7999. PubMed ID: 30757899
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO4 Photoanode.
    Liu B; Li J; Wu HL; Liu WQ; Jiang X; Li ZJ; Chen B; Tung CH; Wu LZ
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18577-83. PubMed ID: 27359374
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Covalent Immobilization of a Molecular Catalyst on Cu2O Photocathodes for CO2 Reduction.
    Schreier M; Luo J; Gao P; Moehl T; Mayer MT; Grätzel M
    J Am Chem Soc; 2016 Feb; 138(6):1938-46. PubMed ID: 26804626
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.
    Pang H; Masuda T; Ye J
    Chem Asian J; 2018 Jan; 13(2):127-142. PubMed ID: 29193762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photocatalytic CO
    Stanley PM; Su AY; Ramm V; Fink P; Kimna C; Lieleg O; Elsner M; Lercher JA; Rieger B; Warnan J; Fischer RA
    Adv Mater; 2023 Feb; 35(6):e2207380. PubMed ID: 36394175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO
    Rohloff M; Anke B; Kasian O; Zhang S; Lerch M; Scheu C; Fischer A
    ACS Appl Mater Interfaces; 2019 May; 11(18):16430-16442. PubMed ID: 31017393
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tunable Syngas Production through CO
    Daiyan R; Chen R; Kumar P; Bedford NM; Qu J; Cairney JM; Lu X; Amal R
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9307-9315. PubMed ID: 32023413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective Photocatalytic CO
    Kuehnel MF; Orchard KL; Dalle KE; Reisner E
    J Am Chem Soc; 2017 May; 139(21):7217-7223. PubMed ID: 28467076
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly Efficient Photoelectrochemical Reduction of CO
    Liu LX; Fu J; Jiang LP; Zhang JR; Zhu W; Lin Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26024-26031. PubMed ID: 31245987
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Homogeneous Molecular Iron Catalysts for Direct Photocatalytic Conversion of Formic Acid to Syngas (CO+H
    Irfan RM; Wang T; Jiang D; Yue Q; Zhang L; Cao H; Pan Y; Du P
    Angew Chem Int Ed Engl; 2020 Aug; 59(35):14818-14824. PubMed ID: 32374498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Near-Complete Suppression of Oxygen Evolution for Photoelectrochemical H
    Zhang K; Liu J; Wang L; Jin B; Yang X; Zhang S; Park JH
    J Am Chem Soc; 2020 May; 142(19):8641-8648. PubMed ID: 32160742
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Overall water splitting by photoelectrochemical cells consisting of (ZnSe)
    Higashi T; Kaneko H; Minegishi T; Kobayashi H; Zhong M; Kuang Y; Hisatomi T; Katayama M; Takata T; Nishiyama H; Yamada T; Domen K
    Chem Commun (Camb); 2017 Oct; 53(85):11674-11677. PubMed ID: 29018858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasmon-enhanced nanoporous BiVO4 photoanodes for efficient photoelectrochemical water oxidation.
    Gan J; Rajeeva BB; Wu Z; Penley D; Liang C; Tong Y; Zheng Y
    Nanotechnology; 2016 Jun; 27(23):235401. PubMed ID: 27119335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of a W:BiVO
    Song A; Bogdanoff P; Esau A; Ahmet IY; Levine I; Dittrich T; Unold T; van de Krol R; Berglund SP
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13959-13970. PubMed ID: 32096970
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO
    Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H
    ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.