These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31636708)

  • 1. Improvement of corn stover fuel properties via hydrothermal carbonization combined with surfactant.
    Tu R; Sun Y; Wu Y; Fan X; Wang J; Cheng S; Jia Z; Jiang E; Xu X
    Biotechnol Biofuels; 2019; 12():249. PubMed ID: 31636708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of combined pretreatment with surfactant/ultrasonic and hydrothermal carbonization on fuel properties, pyrolysis and combustion behavior of corn stalk.
    Xu X; Tu R; Sun Y; Wu Y; Jiang E; Zhen J
    Bioresour Technol; 2019 Jan; 271():427-438. PubMed ID: 30343135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of cotton textile waste to clean solid fuel via surfactant-assisted hydrothermal carbonization: Mechanisms and combustion behaviors.
    Xu Z; Qi R; Xiong M; Zhang D; Gu H; Chen W
    Bioresour Technol; 2021 Feb; 321():124450. PubMed ID: 33264746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets.
    Cao L; Yuan X; Li H; Li C; Xiao Z; Jiang L; Huang B; Xiao Z; Chen X; Wang H; Zeng G
    Bioresour Technol; 2015 Jun; 185():254-62. PubMed ID: 25776892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of surfactant on hydrothermal carbonization of coconut shell.
    Tu R; Sun Y; Wu Y; Fan X; Wang J; Shen X; He Z; Jiang E; Xu X
    Bioresour Technol; 2019 Jul; 284():214-221. PubMed ID: 30939383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The correlation of physicochemical properties and combustion performance of hydrochar with fixed carbon index.
    Xu X; Tu R; Sun Y; Wu Y; Jiang E; Gong Y; Li Y
    Bioresour Technol; 2019 Dec; 294():122053. PubMed ID: 31563742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-hydrothermal carbonization of food waste-woody biomass blend towards biofuel pellets production.
    Wang T; Zhai Y; Li H; Zhu Y; Li S; Peng C; Wang B; Wang Z; Xi Y; Wang S; Li C
    Bioresour Technol; 2018 Nov; 267():371-377. PubMed ID: 30031275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pelletization and combustion properties of torrefied Camellia shell via dry and hydrothermal torrefaction: A comparative evaluation.
    Tu R; Jiang E; Yan S; Xu X; Rao S
    Bioresour Technol; 2018 Sep; 264():78-89. PubMed ID: 29787884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature on the fuel properties of food waste and coal blend treated under co-hydrothermal carbonization.
    Ul Saqib N; Sarmah AK; Baroutian S
    Waste Manag; 2019 Apr; 89():236-246. PubMed ID: 31079736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-hydrothermal carbonization of food waste with yard waste for solid biofuel production: Hydrochar characterization and its pelletization.
    Sharma HB; Dubey BK
    Waste Manag; 2020 Dec; 118():521-533. PubMed ID: 32980731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel.
    Lee J; Hong J; Jang D; Park KY
    J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production.
    Zhang S; Su Y; Xu D; Zhu S; Zhang H; Liu X
    Bioresour Technol; 2018 Jun; 258():111-118. PubMed ID: 29524685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of heavy metal-containing biowaste from phytoremediation site to value-added solid fuel through hydrothermal carbonization.
    Lee J; Park KY
    Environ Pollut; 2021 Jan; 269():116127. PubMed ID: 33279266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal carbonization of corncob for hydrochar production and its combustion reactivity in a blast furnace.
    An Q; Wang Q; Zhai J
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):16653-16666. PubMed ID: 38319417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation.
    Pala M; Kantarli IC; Buyukisik HB; Yanik J
    Bioresour Technol; 2014 Jun; 161():255-62. PubMed ID: 24709539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-hydrothermal carbonization of polyvinyl chloride and corncob for clean solid fuel production.
    Lu X; Ma X; Chen X; Yao Z; Zhang C
    Bioresour Technol; 2020 Apr; 301():122763. PubMed ID: 31972403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review.
    Wang Q; Wu S; Cui D; Zhou H; Wu D; Pan S; Xu F; Wang Z
    Sci Total Environ; 2022 Dec; 850():158034. PubMed ID: 35970457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors.
    Zhang X; Zhang L; Li A
    Bioresour Technol; 2019 Dec; 294():122113. PubMed ID: 31542495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel.
    Minaret J; Dutta A
    Bioresour Technol; 2016 Jan; 200():804-11. PubMed ID: 26584229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy and nutrient recovery by spent mushroom substrate-assisted hydrothermal carbonization of sewage sludge.
    Shan G; Li W; Bao S; Hu X; Liu J; Zhu L; Tan W
    Waste Manag; 2023 Jan; 155():192-198. PubMed ID: 36379168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.