These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 31636811)
1. DEEP LEARNING-BASED ASSESSMENT OF TUMOR-ASSOCIATED STROMA FOR DIAGNOSING BREAST CANCER IN HISTOPATHOLOGY IMAGES. Bejnordi BE; Lin J; Glass B; Mullooly M; Gierach GL; Sherman ME; Karssemeijer N; van der Laak J; Beck AH Proc IEEE Int Symp Biomed Imaging; 2017 Apr; 2017():929-932. PubMed ID: 31636811 [TBL] [Abstract][Full Text] [Related]
2. Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Ehteshami Bejnordi B; Mullooly M; Pfeiffer RM; Fan S; Vacek PM; Weaver DL; Herschorn S; Brinton LA; van Ginneken B; Karssemeijer N; Beck AH; Gierach GL; van der Laak JAWM; Sherman ME Mod Pathol; 2018 Oct; 31(10):1502-1512. PubMed ID: 29899550 [TBL] [Abstract][Full Text] [Related]
3. Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. Bejnordi BE; Zuidhof G; Balkenhol M; Hermsen M; Bult P; van Ginneken B; Karssemeijer N; Litjens G; van der Laak J J Med Imaging (Bellingham); 2017 Oct; 4(4):044504. PubMed ID: 29285517 [TBL] [Abstract][Full Text] [Related]
4. A dense multi-path decoder for tissue segmentation in histopathology images. Vu QD; Kwak JT Comput Methods Programs Biomed; 2019 May; 173():119-129. PubMed ID: 31046986 [TBL] [Abstract][Full Text] [Related]
5. Automated assessment of breast cancer margin in optical coherence tomography images via pretrained convolutional neural network. Singla N; Dubey K; Srivastava V J Biophotonics; 2019 Mar; 12(3):e201800255. PubMed ID: 30318761 [TBL] [Abstract][Full Text] [Related]
6. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Sharma H; Zerbe N; Klempert I; Hellwich O; Hufnagl P Comput Med Imaging Graph; 2017 Nov; 61():2-13. PubMed ID: 28676295 [TBL] [Abstract][Full Text] [Related]
7. Artificial Intelligence Algorithms to Assess Hormonal Status From Tissue Microarrays in Patients With Breast Cancer. Shamai G; Binenbaum Y; Slossberg R; Duek I; Gil Z; Kimmel R JAMA Netw Open; 2019 Jul; 2(7):e197700. PubMed ID: 31348505 [TBL] [Abstract][Full Text] [Related]
8. Digital Assessment of Stained Breast Tissue Images for Comprehensive Tumor and Microenvironment Analysis. Mittal S; Stoean C; Kajdacsy-Balla A; Bhargava R Front Bioeng Biotechnol; 2019; 7():246. PubMed ID: 31681737 [TBL] [Abstract][Full Text] [Related]
9. Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network. Khameneh FD; Razavi S; Kamasak M Comput Biol Med; 2019 Jul; 110():164-174. PubMed ID: 31163391 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning to Estimate Human Epidermal Growth Factor Receptor 2 Status from Hematoxylin and Eosin-Stained Breast Tissue Images. Anand D; Kurian NC; Dhage S; Kumar N; Rane S; Gann PH; Sethi A J Pathol Inform; 2020; 11():19. PubMed ID: 33033656 [TBL] [Abstract][Full Text] [Related]
11. Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN). Agnes SA; Anitha J; Pandian SIA; Peter JD J Med Syst; 2019 Dec; 44(1):30. PubMed ID: 31838610 [TBL] [Abstract][Full Text] [Related]
12. Deep Learning Models Differentiate Tumor Grades from H&E Stained Histology Sections. Khoshdeli M; Borowsky A; Parvin B Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():620-623. PubMed ID: 30440473 [TBL] [Abstract][Full Text] [Related]
13. Classification of breast cancer histology images using Convolutional Neural Networks. Araújo T; Aresta G; Castro E; Rouco J; Aguiar P; Eloy C; Polónia A; Campilho A PLoS One; 2017; 12(6):e0177544. PubMed ID: 28570557 [TBL] [Abstract][Full Text] [Related]
14. Automated diagnosis of breast ultrasonography images using deep neural networks. Qi X; Zhang L; Chen Y; Pi Y; Chen Y; Lv Q; Yi Z Med Image Anal; 2019 Feb; 52():185-198. PubMed ID: 30594771 [TBL] [Abstract][Full Text] [Related]
15. Automatic classification of tissue malignancy for breast carcinoma diagnosis. Fondón I; Sarmiento A; García AI; Silvestre M; Eloy C; Polónia A; Aguiar P Comput Biol Med; 2018 May; 96():41-51. PubMed ID: 29544146 [TBL] [Abstract][Full Text] [Related]
16. Application of convolutional neural networks to breast biopsies to delineate tissue correlates of mammographic breast density. Mullooly M; Ehteshami Bejnordi B; Pfeiffer RM; Fan S; Palakal M; Hada M; Vacek PM; Weaver DL; Shepherd JA; Fan B; Mahmoudzadeh AP; Wang J; Malkov S; Johnson JM; Herschorn SD; Sprague BL; Hewitt S; Brinton LA; Karssemeijer N; van der Laak J; Beck A; Sherman ME; Gierach GL NPJ Breast Cancer; 2019; 5():43. PubMed ID: 31754628 [TBL] [Abstract][Full Text] [Related]
17. Impact of JPEG 2000 compression on deep convolutional neural networks for metastatic cancer detection in histopathological images. Ghazvinian Zanjani F; Zinger S; Piepers B; Mahmoudpour S; Schelkens P; de With PHN J Med Imaging (Bellingham); 2019 Apr; 6(2):027501. PubMed ID: 31037247 [TBL] [Abstract][Full Text] [Related]
18. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Kooi T; van Ginneken B; Karssemeijer N; den Heeten A Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850 [TBL] [Abstract][Full Text] [Related]
19. MuDeRN: Multi-category classification of breast histopathological image using deep residual networks. Gandomkar Z; Brennan PC; Mello-Thoms C Artif Intell Med; 2018 Jun; 88():14-24. PubMed ID: 29705552 [TBL] [Abstract][Full Text] [Related]
20. Impact of pre-analytical variables on deep learning accuracy in histopathology. Jones AD; Graff JP; Darrow M; Borowsky A; Olson KA; Gandour-Edwards R; Datta Mitra A; Wei D; Gao G; Durbin-Johnson B; Rashidi HH Histopathology; 2019 Jul; 75(1):39-53. PubMed ID: 30801768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]