BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31636954)

  • 1. Targeted exon skipping with AAV-mediated split adenine base editors.
    Winter J; Luu A; Gapinske M; Manandhar S; Shirguppe S; Woods WS; Song JS; Perez-Pinera P
    Cell Discov; 2019; 5():41. PubMed ID: 31636954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPLICER: A Highly Efficient Base Editing Toolbox That Enables
    Miskalis A; Shirguppe S; Winter J; Elias G; Swami D; Nambiar A; Stilger M; Woods WS; Gosstola N; Gapinske M; Zeballos A; Moore H; Maslov S; Gaj T; Perez-Pinera P
    bioRxiv; 2024 Apr; ():. PubMed ID: 38883727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenine base-editing-mediated exon skipping induces gene knockout in cultured pig cells.
    Zhu XX; Pan JS; Lin T; Yang YC; Huang QY; Yang SP; Qu ZX; Lin ZS; Wen JC; Yan AF; Feng J; Liu L; Zhang XL; Lu JH; Tang DS
    Biotechnol Lett; 2022 Jan; 44(1):59-76. PubMed ID: 34997407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Duchenne muscular dystrophy by skipping DMD exon 45 with base editors.
    Gapinske M; Winter J; Swami D; Gapinske L; Woods WS; Shirguppe S; Miskalis A; Busza A; Joulani D; Kao CJ; Kostan K; Bigot A; Bashir R; Perez-Pinera P
    Mol Ther Nucleic Acids; 2023 Sep; 33():572-586. PubMed ID: 37637209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping.
    Yang SP; Zhu XX; Qu ZX; Chen CY; Wu YB; Wu Y; Luo ZD; Wang XY; He CY; Fang JW; Wang LQ; Hong GL; Zheng ST; Zeng JM; Yan AF; Feng J; Liu L; Zhang XL; Zhang LG; Miao K; Tang DS
    In Vitro Cell Dev Biol Anim; 2023 Apr; 59(4):241-255. PubMed ID: 37099179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-SKIP: programmable gene splicing with single base editors.
    Gapinske M; Luu A; Winter J; Woods WS; Kostan KA; Shiva N; Song JS; Perez-Pinera P
    Genome Biol; 2018 Aug; 19(1):107. PubMed ID: 30107853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of DMD in human iPSC-derived cardiomyocytes by base-editing-induced exon skipping.
    Wang P; Li H; Zhu M; Han RY; Guo S; Han R
    Mol Ther Methods Clin Dev; 2023 Mar; 28():40-50. PubMed ID: 36588820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient exon skipping by base-editor-mediated abrogation of exonic splicing enhancers.
    Qiu H; Li G; Yuan J; Yang D; Ma Y; Wang F; Dai Y; Chang X
    Cell Rep; 2023 Nov; 42(11):113340. PubMed ID: 37906593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene modification strategies using AO-mediated exon skipping and CRISPR/Cas9 as potential therapies for Duchenne muscular dystrophy patients.
    Solberg MH; Shariatzadeh M; Wilson SL
    Eng Biol; 2020 Dec; 4(3):37-42. PubMed ID: 36968157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning based CRISPR gRNA design for therapeutic exon skipping.
    Louie W; Shen MW; Tahiry Z; Zhang S; Worstell D; Cassa CA; Sherwood RI; Gifford DK
    PLoS Comput Biol; 2021 Jan; 17(1):e1008605. PubMed ID: 33417623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic Exon Skipping Through a CRISPR-Guided Cytidine Deaminase Rescues Dystrophic Cardiomyopathy in Vivo.
    Li J; Wang K; Zhang Y; Qi T; Yuan J; Zhang L; Qiu H; Wang J; Yang HT; Dai Y; Song Y; Chang X
    Circulation; 2021 Nov; 144(22):1760-1776. PubMed ID: 34698513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The "new favorite" of gene editing technology-single base editors.
    Wei Y; Zhang XH; Li DL
    Yi Chuan; 2017 Dec; 39(12):1115-1121. PubMed ID: 29258982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
    Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR
    Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base editing as a genetic treatment for spinal muscular atrophy.
    Alves CRR; Ha LL; Yaworski R; Lazzarotto CR; Christie KA; Reilly A; Beauvais A; Doll RM; de la Cruz D; Maguire CA; Swoboda KJ; Tsai SQ; Kothary R; Kleinstiver BP
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust.
    Chen D; Tang JX; Li B; Hou L; Wang X; Kang L
    BMC Biotechnol; 2018 Sep; 18(1):60. PubMed ID: 30253761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase.
    Tong H; Liu N; Wei Y; Zhou Y; Li Y; Wu D; Jin M; Cui S; Li H; Li G; Zhou J; Yuan Y; Zhang H; Shi L; Yao X; Yang H
    Natl Sci Rev; 2023 Aug; 10(8):nwad143. PubMed ID: 37404457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
    Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK
    Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in
    Zhang Y; Yun K; Huang H; Tu R; Hua E; Wang M
    ACS Synth Biol; 2021 May; 10(5):1053-1063. PubMed ID: 33720688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome editing through large insertion leads to the skipping of targeted exon.
    Uddin B; Chen NP; Panic M; Schiebel E
    BMC Genomics; 2015 Dec; 16():1082. PubMed ID: 26691863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.