These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31637127)

  • 1. Relationships between key functional traits of the waterlily
    Henriot CP; Cuenot Q; Levrey LH; Loup C; Chiarello L; Masclaux H; Bornette G
    PeerJ; 2019; 7():e7861. PubMed ID: 31637127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant trait-environment trends and their conservation implications for riparian wetlands in the Yellow River.
    Hong Z; Ding S; Zhao Q; Qiu P; Chang J; Peng L; Wang S; Hong Y; Liu GJ
    Sci Total Environ; 2021 May; 767():144867. PubMed ID: 33434836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-acquisition traits link aboveground biomass and environment in inner saline-alkaline herbaceous marshes.
    Ying L; Maohua M; Zhi D; Bo L; Ming J; Xianguo L; Yanjing L
    Sci Total Environ; 2023 Jan; 857(Pt 3):159660. PubMed ID: 36302420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant traits and environment: floating leaf blade production and turnover of waterlilies.
    Klok PF; van der Velde G
    PeerJ; 2017; 5():e3212. PubMed ID: 28462025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abundance-weighted plant functional trait variation differs between terrestrial and wetland habitats along wide climatic gradients.
    Hu YK; Liu GF; Pan X; Song YB; Dong M; Cornelissen JHC
    Sci China Life Sci; 2021 Apr; 64(4):593-605. PubMed ID: 32975721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixtures of macrophyte growth forms promote nitrogen cycling in wetlands.
    Choudhury MI; McKie BG; Hallin S; Ecke F
    Sci Total Environ; 2018 Sep; 635():1436-1443. PubMed ID: 29710596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrological management for improving nutrient assimilative capacity in plant-dominated wetlands: A modelling approach.
    Xu Z; Yang Z; Yin X; Cai Y; Sun T
    J Environ Manage; 2016 Jul; 177():84-92. PubMed ID: 27085151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low investment in sexual reproduction threatens plants adapted to phosphorus limitation.
    Fujita Y; Venterink HO; van Bodegom PM; Douma JC; Heil GW; Hölzel N; Jabłońska E; Kotowski W; Okruszko T; Pawlikowski P; de Ruiter PC; Wassen MJ
    Nature; 2014 Jan; 505(7481):82-6. PubMed ID: 24240278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of nitrogen and phosphorus metabolism in seagrasses.
    Touchette BW; Burkholder JM
    J Exp Mar Biol Ecol; 2000 Jul; 250(1-2):133-167. PubMed ID: 10969167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive plasticity and fitness costs of endangered, nonendangered, and invasive plants in response to variation in nitrogen and phosphorus availabilities.
    Minden V; Verhoeven K; Olde Venterink H
    Ecol Evol; 2023 May; 13(5):e10075. PubMed ID: 37193113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature variation on phosphorus flux at the sediment-water interface of the steppe wetlands.
    He J; Feng H; Diao Z; Su D
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):12441-12452. PubMed ID: 36112283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trait expression and signatures of adaptation in response to nitrogen addition in the common wetland plant Juncus effusus.
    Born J; Michalski SG
    PLoS One; 2019; 14(1):e0209886. PubMed ID: 30608976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Floral variation and environmental heterogeneity in a tristylous clonal aquatic of the Pantanal wetlands of Brazil.
    Leme da Cunha N; Fischer E; Lorenz-Lemke AP; Barrett SC
    Ann Bot; 2014 Dec; 114(8):1637-49. PubMed ID: 25180289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic phosphorus behaviour within a UK Ramsar wetland: Impacts of seasonality and hydrology on algal growth and implications for management.
    Crocker R; Blake WH; Hutchinson TH; Comber S
    Sci Total Environ; 2023 Oct; 893():164606. PubMed ID: 37271380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecosystem-phase interactions: aquatic eutrophication decreases terrestrial plant diversity in California vernal pools.
    Kneitel JM; Lessin CL
    Oecologia; 2010 Jun; 163(2):461-9. PubMed ID: 20012097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetland phosphorus dynamics and phosphorus removal potential.
    Skinner M
    Water Environ Res; 2022 Oct; 94(10):e10799. PubMed ID: 36259138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galerucella nymphaeae (Col., Chrysomelidae) grazing increases Nuphar leaf production and affects carbon and nitrogen dynamics in ponds.
    Setälä H; Mäkelä I
    Oecologia; 1991 Apr; 86(2):170-176. PubMed ID: 28313198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional trait composition of aquatic plants can serve to disentangle multiple interacting stressors in lowland streams.
    Baattrup-Pedersen A; Göthe E; Riis T; O'Hare MT
    Sci Total Environ; 2016 Feb; 543(Pt A):230-238. PubMed ID: 26584073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrophytes as potential biomonitors in peri-urban wetlands of the Middle Parana River (Argentina).
    Alonso X; Hadad HR; Córdoba C; Polla W; Reyes MS; Fernández V; Granados I; Marino L; Villalba A
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):312-323. PubMed ID: 29034426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life form dependent impacts of macrophyte vegetation on the ratio of resuspended nutrients.
    Nurminen L; Horppila J
    Water Res; 2009 Jul; 43(13):3217-26. PubMed ID: 19505709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.