BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31637164)

  • 1. Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive Tissue Support.
    Shin M; Song KH; Burrell JC; Cullen DK; Burdick JA
    Adv Sci (Weinh); 2019 Oct; 6(20):1901229. PubMed ID: 31637164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragmenting Bulk Hydrogels and Processing into Granular Hydrogels for Biomedical Applications.
    Muir VG; Prendergast ME; Burdick JA
    J Vis Exp; 2022 May; (183):. PubMed ID: 35662235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Microgel Fabrication Technique on Granular Hydrogel Properties.
    Muir VG; Qazi TH; Shan J; Groll J; Burdick JA
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4269-4281. PubMed ID: 33591726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sticking Together: Injectable Granular Hydrogels with Increased Functionality via Dynamic Covalent Inter-Particle Crosslinking.
    Muir VG; Qazi TH; Weintraub S; Torres Maldonado BO; Arratia PE; Burdick JA
    Small; 2022 Sep; 18(36):e2201115. PubMed ID: 35315233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Responsive Reversible Granular Hydrogels Based on Metal-Binding Mussel-Inspired Peptides.
    Rammal M; Li C; Reeves J; Moraes C; Harrington MJ
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29004-29011. PubMed ID: 37289097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamically Cross-Linked Granular Hydrogels for 3D Printing and Therapeutic Delivery.
    Lee HP; Davis R; Wang TC; Deo KA; Cai KX; Alge DL; Lele TP; Gaharwar AK
    ACS Appl Bio Mater; 2023 Sep; 6(9):3683-3695. PubMed ID: 37584641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics.
    Kim S; Choi H; Son D; Shin M
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoengineered Granular Hydrogel Bioinks with Preserved Interconnected Microporosity for Extrusion Bioprinting.
    Ataie Z; Kheirabadi S; Zhang JW; Kedzierski A; Petrosky C; Jiang R; Vollberg C; Sheikhi A
    Small; 2022 Sep; 18(37):e2202390. PubMed ID: 35922399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration.
    An C; Zhou R; Zhang H; Zhang Y; Liu W; Liu J; Bao B; Sun K; Ren C; Zhang Y; Lin Q; Zhang L; Cheng F; Song J; Zhu L; Wang H
    Acta Biomater; 2023 Feb; 157():91-107. PubMed ID: 36427687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable Granular Hydrogels with Multifunctional Properties for Biomedical Applications.
    Mealy JE; Chung JJ; Jeong HH; Issadore D; Lee D; Atluri P; Burdick JA
    Adv Mater; 2018 May; 30(20):e1705912. PubMed ID: 29602270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jammed Microgel Inks for 3D Printing Applications.
    Highley CB; Song KH; Daly AC; Burdick JA
    Adv Sci (Weinh); 2019 Jan; 6(1):1801076. PubMed ID: 30643716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications.
    Mendes BB; Daly AC; Reis RL; Domingues RMA; Gomes ME; Burdick JA
    Acta Biomater; 2021 Jan; 119():101-113. PubMed ID: 33130309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conducting polymer-based granular hydrogels for injectable 3D cell scaffolds.
    Feig VR; Santhanam S; McConnell KW; Liu K; Azadian M; Brunel LG; Huang Z; Tran H; George PM; Bao Z
    Adv Mater Technol; 2021 Jun; 6(6):. PubMed ID: 34179344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jammed Microgel-Based Inks for 3D Printing of Complex Structures Transformable via pH/Temperature Variations.
    Moon D; Lee MG; Sun JY; Song KH; Doh J
    Macromol Rapid Commun; 2022 Oct; 43(19):e2200271. PubMed ID: 35686322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters.
    Pérez LA; Hernández R; Alonso JM; Pérez-González R; Sáez-Martínez V
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods to Characterize Granular Hydrogel Rheological Properties, Porosity, and Cell Invasion.
    Qazi TH; Muir VG; Burdick JA
    ACS Biomater Sci Eng; 2022 Apr; 8(4):1427-1442. PubMed ID: 35330993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties.
    Muir VG; Weintraub S; Dhand AP; Fallahi H; Han L; Burdick JA
    Adv Sci (Weinh); 2023 Apr; 10(10):e2206117. PubMed ID: 36717272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamically crosslinked thermoresponsive granular hydrogels.
    Lee HP; Cai KX; Wang TC; Davis R; Deo K; Singh KA; Lele TP; Gaharwar AK
    J Biomed Mater Res A; 2023 Oct; 111(10):1577-1587. PubMed ID: 37199446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.