BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31637237)

  • 1. Targeted Approaches to Inhibit Sialylation of Multiple Myeloma in the Bone Marrow Microenvironment.
    Natoni A; Bohara R; Pandit A; O'Dwyer M
    Front Bioeng Biotechnol; 2019; 7():252. PubMed ID: 31637237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sialyltransferase inhibition leads to inhibition of tumor cell interactions with E-selectin, VCAM1, and MADCAM1, and improves survival in a human multiple myeloma mouse model.
    Natoni A; Farrell ML; Harris S; Falank C; Kirkham-McCarthy L; Macauley MS; Reagan MR; O'Dwyer M
    Haematologica; 2020; 105(2):457-467. PubMed ID: 31101754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrant Sialylation in Cancer: Therapeutic Opportunities.
    Munkley J
    Cancers (Basel); 2022 Aug; 14(17):. PubMed ID: 36077781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Selectins and Their Ligands in Cancer.
    Natoni A; Macauley MS; O'Dwyer ME
    Front Oncol; 2016; 6():93. PubMed ID: 27148485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma.
    Glavey SV; Manier S; Natoni A; Sacco A; Moschetta M; Reagan MR; Murillo LS; Sahin I; Wu P; Mishima Y; Zhang Y; Zhang W; Zhang Y; Morgan G; Joshi L; Roccaro AM; Ghobrial IM; O'Dwyer ME
    Blood; 2014 Sep; 124(11):1765-76. PubMed ID: 25061176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serum protein N-glycosylation changes in multiple myeloma.
    Zhang Z; Westhrin M; Bondt A; Wuhrer M; Standal T; Holst S
    Biochim Biophys Acta Gen Subj; 2019 May; 1863(5):960-970. PubMed ID: 30844485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA Barcoding Reveals Habitual Clonal Dominance of Myeloma Plasma Cells in the Bone Marrow Microenvironment.
    Hewett DR; Vandyke K; Lawrence DM; Friend N; Noll JE; Geoghegan JM; Croucher PI; Zannettino ACW
    Neoplasia; 2017 Dec; 19(12):972-981. PubMed ID: 29091798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma.
    Podar K; Jager D
    Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy.
    Chung C
    Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition of matrix metalloproteinase-2 in the multiple myeloma-bone microenvironment.
    Shay G; Tauro M; Loiodice F; Tortorella P; Sullivan DM; Hazlehurst LA; Lynch CC
    Oncotarget; 2017 Jun; 8(26):41827-41840. PubMed ID: 28611279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNAs: Novel Crossroads between Myeloma Cells and the Bone Marrow Microenvironment.
    Raimondi L; De Luca A; Morelli E; Giavaresi G; Tagliaferri P; Tassone P; Amodio N
    Biomed Res Int; 2016; 2016():6504593. PubMed ID: 26881223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules.
    Kibler C; Schermutzki F; Waller HD; Timpl R; Müller CA; Klein G
    Cell Adhes Commun; 1998 Jun; 5(4):307-23. PubMed ID: 9762471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion molecules in multiple myeloma oncogenesis and targeted therapy.
    Bou Zerdan M; Nasr L; Kassab J; Saba L; Ghossein M; Yaghi M; Dominguez B; Chaulagain CP
    Int J Hematol Oncol; 2022 Apr; 11(2):IJH39. PubMed ID: 35663420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple myeloma: the bone marrow microenvironment and its relation to treatment.
    Andrews SW; Kabrah S; May JE; Donaldson C; Morse HR
    Br J Biomed Sci; 2013; 70(3):110-20. PubMed ID: 24273897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone Marrow Stroma and Vascular Contributions to Myeloma Bone Homing.
    Moschetta M; Kawano Y; Sacco A; Belotti A; Ribolla R; Chiarini M; Giustini V; Bertoli D; Sottini A; Valotti M; Ghidini C; Serana F; Malagola M; Imberti L; Russo D; Montanelli A; Rossi G; Reagan MR; Maiso P; Paiva B; Ghobrial IM; Roccaro AM
    Curr Osteoporos Rep; 2017 Oct; 15(5):499-506. PubMed ID: 28889371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hemopoietic stem cell niche versus the microenvironment of the multiple myeloma-tumor initiating cell.
    Zipori D
    Cancer Microenviron; 2010 Feb; 3(1):15-28. PubMed ID: 21209772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adipose, Bone, and Myeloma: Contributions from the Microenvironment.
    McDonald MM; Fairfield H; Falank C; Reagan MR
    Calcif Tissue Int; 2017 May; 100(5):433-448. PubMed ID: 27343063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lectin staining and Western blot data showing differential sialylation of nutrient-deprived cancer cells to sialic acid supplementation.
    Badr HA; AlSadek DM; Mathew MP; Li CZ; Djansugurova LB; Yarema KJ; Ahmed H
    Data Brief; 2015 Dec; 5():481-8. PubMed ID: 26629491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticancer approach by targeted activation of a global inhibitor of sialyltransferases with acrolein.
    Kasahara T; Chang TC; Yoshioka H; Urano S; Egawa Y; Inoue M; Tahara T; Morimoto K; Pradipta AR; Tanaka K
    Chem Sci; 2024 Jun; 15(25):9566-9573. PubMed ID: 38939146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple myeloma cells promote migration of bone marrow mesenchymal stem cells by altering their translation initiation.
    Dabbah M; Attar-Schneider O; Zismanov V; Tartakover Matalon S; Lishner M; Drucker L
    J Leukoc Biol; 2016 Oct; 100(4):761-770. PubMed ID: 27272311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.