These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 31637666)
21. An Immersive Virtual Reality Platform for Assessing Spatial Navigation Memory in Predementia Screening: Feasibility and Usability Study. Ijaz K; Ahmadpour N; Naismith SL; Calvo RA JMIR Ment Health; 2019 Sep; 6(9):e13887. PubMed ID: 31482851 [TBL] [Abstract][Full Text] [Related]
22. Variants of the Morris water maze task to comparatively assess human and rodent place navigation. Schoenfeld R; Schiffelholz T; Beyer C; Leplow B; Foreman N Neurobiol Learn Mem; 2017 Mar; 139():117-127. PubMed ID: 28057502 [TBL] [Abstract][Full Text] [Related]
23. Mongolian gerbils learn to navigate in complex virtual spaces. Thurley K; Henke J; Hermann J; Ludwig B; Tatarau C; Wätzig A; Herz AV; Grothe B; Leibold C Behav Brain Res; 2014 Jun; 266():161-8. PubMed ID: 24631394 [TBL] [Abstract][Full Text] [Related]
24. Navigation strategy in macaque monkeys: An exploratory experiment in virtual reality. Taillade M; N'Kaoua B; Gross C J Neurosci Methods; 2019 Oct; 326():108336. PubMed ID: 31276693 [TBL] [Abstract][Full Text] [Related]
25. Age differences in spatial memory are mitigated during naturalistic navigation. Hill PF; Bermudez S; McAvan AS; Garren JD; Grilli MD; Barnes CA; Ekstrom AD Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2024 Nov; 31(6):1106-1130. PubMed ID: 38445641 [TBL] [Abstract][Full Text] [Related]
26. A mirror in the sky: assessment of an augmented reality method for depicting navigational information. Reiner AJ; Hollands JG; Jamieson GA; Boustila S Ergonomics; 2020 May; 63(5):548-562. PubMed ID: 32200733 [TBL] [Abstract][Full Text] [Related]
27. Novel Virtual Reality System for Auditory Tasks in Head-fixed Mice. Gao S; Webb J; Mridha Z; Banta A; Kemere C; McGinley M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2925-2928. PubMed ID: 33018619 [TBL] [Abstract][Full Text] [Related]
28. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task. Wilkins LK; Girard TA; Konishi K; King M; Herdman KA; King J; Christensen B; Bohbot VD Hippocampus; 2013 Nov; 23(11):1015-24. PubMed ID: 23939937 [TBL] [Abstract][Full Text] [Related]
29. Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies. Vorhees CV; Williams MT Neurotoxicol Teratol; 2014; 45():75-90. PubMed ID: 25116937 [TBL] [Abstract][Full Text] [Related]
30. Detecting allocentric and egocentric navigation deficits in patients with schizophrenia and bipolar disorder using virtual reality. Mohammadi A; Hesami E; Kargar M; Shams J Neuropsychol Rehabil; 2018 Apr; 28(3):398-415. PubMed ID: 28880126 [TBL] [Abstract][Full Text] [Related]
31. The effects of pool shape manipulations on rat spatial memory acquired in the Morris water maze. Bye CM; Hong NS; Moore K; Deibel SH; McDonald RJ Learn Behav; 2019 Mar; 47(1):29-37. PubMed ID: 29520732 [TBL] [Abstract][Full Text] [Related]
32. Spatial navigation from same and different directions: The role of executive functions, memory and attention in adults with autism spectrum disorder. Ring M; Gaigg SB; de Condappa O; Wiener JM; Bowler DM Autism Res; 2018 May; 11(5):798-810. PubMed ID: 29405653 [TBL] [Abstract][Full Text] [Related]
33. Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Astur RS; Tropp J; Sava S; Constable RT; Markus EJ Behav Brain Res; 2004 May; 151(1-2):103-15. PubMed ID: 15084426 [TBL] [Abstract][Full Text] [Related]
34. Human sex differences in solving a virtual navigation problem. Astur RS; Purton AJ; Zaniewski MJ; Cimadevilla J; Markus EJ Behav Brain Res; 2016 Jul; 308():236-43. PubMed ID: 27108050 [TBL] [Abstract][Full Text] [Related]
35. Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Weniger G; Ruhleder M; Lange C; Wolf S; Irle E Neuropsychologia; 2011 Feb; 49(3):518-27. PubMed ID: 21185847 [TBL] [Abstract][Full Text] [Related]
36. The Virtual Navigation Toolbox: Providing tools for virtual navigation experiments. Müller MM; Scherer J; Unterbrink P; Bertrand OJN; Egelhaaf M; Boeddeker N PLoS One; 2023; 18(11):e0293536. PubMed ID: 37943845 [TBL] [Abstract][Full Text] [Related]
37. The potential of virtual reality for spatial navigation research across the adult lifespan. Diersch N; Wolbers T J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728232 [TBL] [Abstract][Full Text] [Related]
38. Stress affects navigation strategies in immersive virtual reality. Varshney A; Munns ME; Kasowski J; Zhou M; He C; Grafton ST; Giesbrecht B; Hegarty M; Beyeler M Sci Rep; 2024 Mar; 14(1):5949. PubMed ID: 38467699 [TBL] [Abstract][Full Text] [Related]
39. A virtual reality task based on animal research - spatial learning and memory in patients after the first episode of schizophrenia. Fajnerová I; Rodriguez M; Levčík D; Konrádová L; Mikoláš P; Brom C; Stuchlík A; Vlček K; Horáček J Front Behav Neurosci; 2014; 8():157. PubMed ID: 24904329 [TBL] [Abstract][Full Text] [Related]
40. Using virtual reality to distinguish subjects with multiple- but not single-domain amnestic mild cognitive impairment from normal elderly subjects. Mohammadi A; Kargar M; Hesami E Psychogeriatrics; 2018 Mar; 18(2):132-142. PubMed ID: 29409155 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]