These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31637666)

  • 41. How Much of What We Learn in Virtual Reality Transfers to Real-World Navigation?
    Hejtmanek L; Starrett M; Ferrer E; Ekstrom AD
    Multisens Res; 2020 Mar; 33(4-5):479-503. PubMed ID: 31972540
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation.
    Rogers J; Churilov L; Hannan AJ; Renoir T
    Neurobiol Learn Mem; 2017 Mar; 139():37-49. PubMed ID: 27988312
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control.
    Schöberl F; Zwergal A; Brandt T
    Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Allocentric memory impaired and egocentric memory intact as assessed by virtual reality in recent-onset schizophrenia.
    Weniger G; Irle E
    Schizophr Res; 2008 Apr; 101(1-3):201-9. PubMed ID: 18276116
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multisensory input modulates memory-guided spatial navigation in humans.
    Iggena D; Jeung S; Maier PM; Ploner CJ; Gramann K; Finke C
    Commun Biol; 2023 Nov; 6(1):1167. PubMed ID: 37963986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of age in women in visuo-spatial memory in reaching and navigation tasks with and without landmarks.
    Perrochon A; Mandigout S; Petruzzellis S; Soria Garcia N; Zaoui M; Berthoz A; Daviet JC
    Neurosci Lett; 2018 Sep; 684():13-17. PubMed ID: 29966753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial learning and memory following fimbria-fornix transection and grafting of fetal septal neurons to the hippocampus.
    Nilsson OG; Shapiro ML; Gage FH; Olton DS; Björklund A
    Exp Brain Res; 1987; 67(1):195-215. PubMed ID: 3622677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.
    Sato M; Kawano M; Mizuta K; Islam T; Lee MG; Hayashi Y
    eNeuro; 2017; 4(3):. PubMed ID: 28484738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of Real and Virtual Radial Arm Maze Task in Human.
    Palombi T; Mandolesi L; Alivernini F; Chirico A; Lucidi F
    Brain Sci; 2022 Mar; 12(4):. PubMed ID: 35447999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task.
    Astur RS; Taylor LB; Mamelak AN; Philpott L; Sutherland RJ
    Behav Brain Res; 2002 Apr; 132(1):77-84. PubMed ID: 11853860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hippocampal activation during the recall of remote spatial memories in radial maze tasks.
    Schlesiger MI; Cressey JC; Boublil B; Koenig J; Melvin NR; Leutgeb JK; Leutgeb S
    Neurobiol Learn Mem; 2013 Nov; 106():324-33. PubMed ID: 23742919
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hex Maze: A new virtual maze able to track acquisition and usage of three navigation strategies.
    Spriggs MJ; Kirk IJ; Skelton RW
    Behav Brain Res; 2018 Feb; 339():195-206. PubMed ID: 29203335
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study.
    Kolarik BS; Shahlaie K; Hassan A; Borders AA; Kaufman KC; Gurkoff G; Yonelinas AP; Ekstrom AD
    Neuropsychologia; 2016 Jan; 80():90-101. PubMed ID: 26593960
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Virtual reality tasks disclose spatial memory alterations in fibromyalgia.
    Cánovas R; León I; Roldán MD; Astur R; Cimadevilla JM
    Rheumatology (Oxford); 2009 Oct; 48(10):1273-8. PubMed ID: 19654218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Virtual Reality for Spatial Navigation.
    Jeung S; Hilton C; Berg T; Gehrke L; Gramann K
    Curr Top Behav Neurosci; 2023; 65():103-129. PubMed ID: 36512288
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Schematic representations of local environmental space guide goal-directed navigation.
    Marchette SA; Ryan J; Epstein RA
    Cognition; 2017 Jan; 158():68-80. PubMed ID: 27814459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploration of virtual mazes by rhesus monkeys (Macaca mulatta).
    Washburn DA; Astur RS
    Anim Cogn; 2003 Sep; 6(3):161-8. PubMed ID: 12750961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age and dementia related differences in spatial navigation within an immersive virtual environment.
    Zakzanis KK; Quintin G; Graham SJ; Mraz R
    Med Sci Monit; 2009 Apr; 15(4):CR140-50. PubMed ID: 19333197
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reinforcement learning approaches to hippocampus-dependent flexible spatial navigation.
    Tessereau C; O'Dea R; Coombes S; Bast T
    Brain Neurosci Adv; 2021; 5():2398212820975634. PubMed ID: 33954259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.