BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 31637873)

  • 41. Bead milling for lipid recovery from thraustochytrid cells and selective hydrolysis of Schizochytrium DT3 oil using lipase.
    Byreddy AR; Barrow CJ; Puri M
    Bioresour Technol; 2016 Jan; 200():464-9. PubMed ID: 26519698
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Degradation of Distillery Lees (Shochu kasu) by Cellulase-Producing Thraustochytrids.
    Taoka Y; Nagano N; Kai H; Hayashi M
    J Oleo Sci; 2017 Jan; 66(1):31-40. PubMed ID: 27928143
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-quality genome-scale metabolic model of Aurantiochytrium sp. T66.
    Simensen V; Voigt A; Almaas E
    Biotechnol Bioeng; 2021 May; 118(5):2105-2117. PubMed ID: 33624839
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats.
    Singh P; Liu Y; Li L; Wang G
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5789-805. PubMed ID: 24805845
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of Carotenoids and Phospholipids by
    Leyton A; Shene C; Chisti Y; Asenjo JA
    Mar Drugs; 2022 Jun; 20(7):. PubMed ID: 35877709
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fatty acid composition of the milk lipids of Nepalese women: correlation between fatty acid composition of serum phospholipids and melting point.
    Glew RH; Huang YS; Vander Jagt TA; Chuang LT; Bhatt SK; Magnussen MA; VanderJagt DJ
    Prostaglandins Leukot Essent Fatty Acids; 2001 Sep; 65(3):147-56. PubMed ID: 11728165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial production of docosahexaenoic acid (DHA): biosynthetic pathways, physical parameter optimization, and health benefits.
    Abbas N; Riaz S; Mazhar S; Essa R; Maryam M; Saleem Y; Syed Q; Perveen I; Bukhari B; Ashfaq S; Abidi SHI
    Arch Microbiol; 2023 Aug; 205(9):321. PubMed ID: 37642791
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Total Lipids Content, Lipid Class and Fatty Acid Composition of Ten Species of Microalgae.
    Yang Y; Du L; Hosokawa M; Miyashita K
    J Oleo Sci; 2020 Oct; 69(10):1181-1189. PubMed ID: 32908099
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of structured lipids containing medium-chain and omega-3 fatty acids.
    Hamam F; Shahidi F
    J Agric Food Chem; 2006 Jun; 54(12):4390-6. PubMed ID: 16756372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced production of high-value polyunsaturated fatty acids (PUFAs) from potential thraustochytrid Aurantiochytrium sp.
    Chauhan AS; Patel AK; Chen CW; Chang JS; Michaud P; Dong CD; Singhania RR
    Bioresour Technol; 2023 Feb; 370():128536. PubMed ID: 36581232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of unsaturated fatty acids on membrane composition and signal transduction in HT-29 human colon cancer cells.
    Awad AB; Young AL; Fink CS
    Cancer Lett; 1996 Nov; 108(1):25-33. PubMed ID: 8950205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of genes involved in fatty acid elongation and desaturation in thraustochytrid marine eukaryotes.
    Nagano N; Sakaguchi K; Taoka Y; Okita Y; Honda D; Ito M; Hayashi M
    J Oleo Sci; 2011; 60(9):475-81. PubMed ID: 21852747
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PUFA synthase-independent DHA synthesis pathway in Parietichytrium sp. and its modification to produce EPA and n-3DPA.
    Ishibashi Y; Goda H; Hamaguchi R; Sakaguchi K; Sekiguchi T; Ishiwata Y; Okita Y; Mochinaga S; Ikeuchi S; Mizobuchi T; Takao Y; Mori K; Tashiro K; Okino N; Honda D; Hayashi M; Ito M
    Commun Biol; 2021 Dec; 4(1):1378. PubMed ID: 34887503
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioconversion of waste acid oil to docosahexaenoic acid by integration of "ex novo'' and "de novo'' fermentation in Aurantiochytrium limacinum.
    Laddha H; Pawar PR; Prakash G
    Bioresour Technol; 2021 Jul; 332():125062. PubMed ID: 33839510
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation and characterization of the ω3-docosapentaenoic acid-producing microorganism Aurantiochytrium sp. T7.
    Wu CY; Okuda T; Ando A; Hatano A; Kikukawa H; Ogawa J
    J Biosci Bioeng; 2022 Mar; 133(3):229-234. PubMed ID: 34893429
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in
    Li S; Hu Z; Yang X; Li Y
    Mar Drugs; 2020 Dec; 18(12):. PubMed ID: 33271856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3.
    Tsai HP; Chuang LT; Chen CN
    Food Chem; 2016 Feb; 192():682-90. PubMed ID: 26304398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced saturated fatty acids accumulation in cultures of newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. for large-scale biodiesel production.
    Wang Q; Sen B; Liu X; He Y; Xie Y; Wang G
    Sci Total Environ; 2018 Aug; 631-632():994-1004. PubMed ID: 29728009
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Long-term feeding of Atlantic salmon in seawater with low dietary long-chain n-3 fatty acids affects tissue status of the brain, retina and erythrocytes.
    Sissener NH; Torstensen BE; Stubhaug I; Rosenlund G
    Br J Nutr; 2016 Jun; 115(11):1919-29. PubMed ID: 27044510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dietary alpha-linolenic acid lowers postprandial lipid levels with increase of eicosapentaenoic and docosahexaenoic acid contents in rat hepatic membrane.
    Kim HK; Choi H
    Lipids; 2001 Dec; 36(12):1331-6. PubMed ID: 11834085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.