BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31638101)

  • 1. Small-world networks of neuroblastoma cells cultured in three-dimensional polymeric scaffolds featuring multi-scale roughness.
    Onesto V; Accardo A; Vieu C; Gentile F
    Neural Regen Res; 2020 Apr; 15(4):759-768. PubMed ID: 31638101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired 3D microprinted cell scaffolds: Integration of graph theory to recapitulate complex network wiring in lymph nodes.
    Chin MHW; Reid B; Lachina V; Acton SE; Coppens MO
    Biotechnol J; 2024 Jan; 19(1):e2300359. PubMed ID: 37986209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity.
    Neves SC; Mota C; Longoni A; Barrias CC; Granja PL; Moroni L
    Biofabrication; 2016 May; 8(2):025012. PubMed ID: 27219645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-topography Enhances Communication in Neural Cells Networks.
    Onesto V; Cancedda L; Coluccio ML; Nanni M; Pesce M; Malara N; Cesarelli M; Di Fabrizio E; Amato F; Gentile F
    Sci Rep; 2017 Aug; 7(1):9841. PubMed ID: 28851984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 3D imaging of mesenchymal stem cells on porous scaffolds using high-contrasted x-ray computed nanotomography.
    Vojtová L; Zikmund T; Pavliňáková V; Šalplachta J; Kalasová D; Prosecká E; Brtníková J; Žídek J; Pavliňák D; Kaiser J
    J Microsc; 2019 Mar; 273(3):169-177. PubMed ID: 30467862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology.
    Marinaro G; La Rocca R; Toma A; Barberio M; Cancedda L; Di Fabrizio E; Decuzzi P; Gentile F
    Integr Biol (Camb); 2015 Feb; 7(2):184-97. PubMed ID: 25515929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of scaffold mean pore size in meniscus regeneration.
    Zhang ZZ; Jiang D; Ding JX; Wang SJ; Zhang L; Zhang JY; Qi YS; Chen XS; Yu JK
    Acta Biomater; 2016 Oct; 43():314-326. PubMed ID: 27481291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Printed Scaffolds with Controlled Micro-/Nanoporous Surface Topography Direct Chondrogenic and Osteogenic Differentiation of Mesenchymal Stem Cells.
    Prasopthum A; Cooper M; Shakesheff KM; Yang J
    ACS Appl Mater Interfaces; 2019 May; 11(21):18896-18906. PubMed ID: 31067023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk fibroin scaffolds with a micro-/nano-fibrous architecture for dermal regeneration.
    Li X; You R; Luo Z; Chen G; Li M
    J Mater Chem B; 2016 May; 4(17):2903-2912. PubMed ID: 32262968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of neural networks with structural and functional features consistent with small-world network topology on surface-grafted polymer particles.
    Valderhaug VD; Glomm WR; Sandru EM; Yasuda M; Sandvig A; Sandvig I
    R Soc Open Sci; 2019 Oct; 6(10):191086. PubMed ID: 31824715
    [No Abstract]   [Full Text] [Related]  

  • 13. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering.
    He L; Liu B; Xipeng G; Xie G; Liao S; Quan D; Cai D; Lu J; Ramakrishna S
    Eur Cell Mater; 2009 Oct; 18():63-74. PubMed ID: 19859871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth.
    Maggi A; Li H; Greer JR
    Acta Biomater; 2017 Nov; 63():294-305. PubMed ID: 28923538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced osteoblast adhesion on polymeric nano-scaffolds for bone tissue engineering.
    Saranya N; Saravanan S; Moorthi A; Ramyakrishna B; Selvamurugan N
    J Biomed Nanotechnol; 2011 Apr; 7(2):238-44. PubMed ID: 21702361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing a novel three-dimensional scaffold with mesoporous TiO
    Wan Y; Chang P; Yang Z; Xiong G; Liu P; Luo H
    J Mater Chem B; 2015 Jul; 3(27):5595-5602. PubMed ID: 32262529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering.
    Danilevicius P; Rekstyte S; Balciunas E; Kraniauskas A; Jarasiene R; Sirmenis R; Baltriukiene D; Bukelskiene V; Gadonas R; Malinauskas M
    J Biomed Opt; 2012 Aug; 17(8):081405-1. PubMed ID: 23224166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration.
    Winter CC; Katiyar KS; Hernandez NS; Song YJ; Struzyna LA; Harris JP; Cullen DK
    Acta Biomater; 2016 Jul; 38():44-58. PubMed ID: 27090594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional gelatin/PVA scaffold with nanofibrillated collagen surface for applications in hard-tissue regeneration.
    Kim H; Yang GH; Kim G
    Int J Biol Macromol; 2019 Aug; 135():21-28. PubMed ID: 31100404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.