These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 31638382)

  • 1. Improved Damping and High Strength of Graphene-Coated Nickel Hybrid Foams.
    Wang H; Ma C; Zhang W; Cheng HM; Zeng Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42690-42696. PubMed ID: 31638382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing and damping capacity of NiTi foams with laminated pore architecture.
    Zhang X; Wei L
    J Mech Behav Biomed Mater; 2019 Aug; 96():108-117. PubMed ID: 31035061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional highly conductive graphene-silver nanowire hybrid foams for flexible and stretchable conductors.
    Wu C; Fang L; Huang X; Jiang P
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21026-34. PubMed ID: 25376385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing Three Dimensional Anatomy of Graphene Foam to Induce Superior Damping in Hierarchical Polyimide Nanostructures.
    Nautiyal P; Boesl B; Agarwal A
    Small; 2017 Mar; 13(10):. PubMed ID: 28026152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ti
    Xie C; Li H; Yuan B; Gao Y; Luo Z; Zhu M
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28043-28051. PubMed ID: 31310102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame.
    Du X; Liu HY; Mai YW
    ACS Nano; 2016 Jan; 10(1):453-62. PubMed ID: 26635121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile fabrication of polyurethane/epoxy IPNs filled graphene aerogel with improved damping, thermal and mechanical properties.
    Zhang C; Chen Y; Li H; Liu H
    RSC Adv; 2018 Jul; 8(48):27390-27399. PubMed ID: 35540022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile fabrication of polyurethane-based graphene foam/lead zirconate titanate/polydimethylsiloxane composites with good damping performance.
    Zhang C; Chen Y; Li H; Xue W; Tian R; Dugnani R; Liu H
    RSC Adv; 2018 Feb; 8(15):7916-7923. PubMed ID: 35541996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-coated polymer foams as tuneable impact sensors.
    Boland CS; Khan U; Binions M; Barwich S; Boland JB; Weaire D; Coleman JN
    Nanoscale; 2018 Mar; 10(11):5366-5375. PubMed ID: 29509201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lightweight and Flexible Graphene Foam Composite with Improved Damping Properties.
    Li T; Du J; Xu M; Song Z; Ren M
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Investigation on 3D Graphene-CNT Hybrid Foams with Different Interactions.
    Kim HS; Lee SK; Wang M; Kang J; Sun Y; Jung JW; Kim K; Kim SM; Nam JD; Suhr J
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.
    Embrey L; Nautiyal P; Loganathan A; Idowu A; Boesl B; Agarwal A
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39717-39727. PubMed ID: 29068220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic deformation mechanism and main influencing factors of carbon nanotube coated graphene foams under uniaxial compression.
    Wang S; Wang C; Khan MB; Chen S
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding.
    Shen B; Li Y; Zhai W; Zheng W
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8050-7. PubMed ID: 26974443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntactic Iron Foams' Properties Tailored by Means of Case Hardening via Carburizing or Carbonitriding.
    Weise J; Lehmhus D; Sandfuchs J; Steinbacher M; Fechte-Heinen R; Busse M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PolyHIPE foams from pristine graphene: Strong, porous, and electrically conductive materials templated by a 2D surfactant.
    Brown EEB; Woltornist SJ; Adamson DH
    J Colloid Interface Sci; 2020 Nov; 580():700-708. PubMed ID: 32712476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lightweight and Ultrastrong Polymer Foams with Unusually Superior Flame Retardancy.
    Xu L; Xiao L; Jia P; Goossens K; Liu P; Li H; Cheng C; Huang Y; Bielawski CW; Geng J
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26392-26399. PubMed ID: 28707895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Printed Graphene Foams.
    Sha J; Li Y; Villegas Salvatierra R; Wang T; Dong P; Ji Y; Lee SK; Zhang C; Zhang J; Smith RH; Ajayan PM; Lou J; Zhao N; Tour JM
    ACS Nano; 2017 Jul; 11(7):6860-6867. PubMed ID: 28608675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors.
    Kuang J; Dai Z; Liu L; Yang Z; Jin M; Zhang Z
    Nanoscale; 2015; 7(20):9252-60. PubMed ID: 25932597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration Damping Materials and Their Applications in Nano/Micro-Electro-Mechanical Systems: A Review.
    Choudhary N; Kaur D
    J Nanosci Nanotechnol; 2015 Mar; 15(3):1907-24. PubMed ID: 26413606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.