These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31638772)

  • 1. Selective Conversion of Carbon Dioxide to Formaldehyde via a Bis(silyl)acetal: Incorporation of Isotopically Labeled C
    Rauch M; Strater Z; Parkin G
    J Am Chem Soc; 2019 Nov; 141(44):17754-17762. PubMed ID: 31638772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc and Magnesium Catalysts for the Hydrosilylation of Carbon Dioxide.
    Rauch M; Parkin G
    J Am Chem Soc; 2017 Dec; 139(50):18162-18165. PubMed ID: 29226678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective reduction of carbon dioxide to bis(silyl)acetal catalyzed by a PBP-supported nickel complex.
    Ríos P; Curado N; López-Serrano J; Rodríguez A
    Chem Commun (Camb); 2016 Feb; 52(10):2114-7. PubMed ID: 26692373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective Reductive Oligomerization of Carbon Dioxide into l-Erythrulose via a Chemoenzymatic Catalysis.
    Desmons S; Grayson-Steel K; Nuñez-Dallos N; Vendier L; Hurtado J; Clapés P; Fauré R; Dumon C; Bontemps S
    J Am Chem Soc; 2021 Oct; 143(39):16274-16283. PubMed ID: 34546049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-carbon bond formation by radical addition-fragmentation reactions of O-alkylated enols.
    Cai Y; Roberts BP; Tocher DA; Barnett SA
    Org Biomol Chem; 2004 Sep; 2(17):2517-29. PubMed ID: 15326533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrosilylative reduction of carbon dioxide by a homoleptic lanthanum aryloxide catalyst with high activity and selectivity.
    Chang K; Del Rosal I; Zheng X; Maron L; Xu X
    Dalton Trans; 2021 Jun; 50(22):7804-7809. PubMed ID: 34100492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide.
    Länge S; Fuchs G
    Eur J Biochem; 1987 Feb; 163(1):147-54. PubMed ID: 3102234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Ruthenium-Catalyzed Transformation of Carbon Dioxide: An Alternative Approach toward Formaldehyde.
    Siebert M; Seibicke M; Siegle AF; Kräh S; Trapp O
    J Am Chem Soc; 2019 Jan; 141(1):334-341. PubMed ID: 30525577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of Carbon Dioxide by Silyl Triflate-Based Frustrated Lewis Pairs.
    Weicker SA; Stephan DW
    Chemistry; 2015 Sep; 21(37):13027-34. PubMed ID: 26223404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Site-Directed Tandem Catalysis on Single Platinum Nanoparticles for Efficient and Stable Oxidation of Formaldehyde at Room Temperature.
    Huang M; Li Y; Li M; Zhao J; Zhu Y; Wang C; Sharma VK
    Environ Sci Technol; 2019 Apr; 53(7):3610-3619. PubMed ID: 30835446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption.
    Liu Z; Du Z; Song H; Wang C; Subhan F; Xing W; Yan Z
    J Colloid Interface Sci; 2014 Feb; 416():124-32. PubMed ID: 24370411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous and Template-Free Synthesis of Meso-Macroporous Polymers for Highly Selective Capture and Conversion of Carbon Dioxide.
    Huang K; Liu F; Jiang L; Dai S
    ChemSusChem; 2017 Nov; 10(21):4144-4149. PubMed ID: 28865092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium-catalyzed reduction of carbon dioxide to formaldehyde.
    Bontemps S; Vendier L; Sabo-Etienne S
    J Am Chem Soc; 2014 Mar; 136(11):4419-25. PubMed ID: 24605761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings.
    Norbäck D; Björnsson E; Janson C; Widström J; Boman G
    Occup Environ Med; 1995 Jun; 52(6):388-95. PubMed ID: 7627316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions.
    Schutte WA; Allamandola LJ; Sandford SA
    Icarus; 1993; 104():118-37. PubMed ID: 11540089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges.
    Thakur IS; Kumar M; Varjani SJ; Wu Y; Gnansounou E; Ravindran S
    Bioresour Technol; 2018 May; 256():478-490. PubMed ID: 29459105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formaldehyde metabolism by Escherichia coli. In vivo carbon, deuterium, and two-dimensional NMR observations of multiple detoxifying pathways.
    Hunter BK; Nicholls KM; Sanders JK
    Biochemistry; 1984 Jan; 23(3):508-14. PubMed ID: 6367820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Transformation of CO
    Yoo C; Kim YE; Lee Y
    Acc Chem Res; 2018 May; 51(5):1144-1152. PubMed ID: 29634236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetic and deuterium isotope effect studies on the metabolism of formaldehyde and formate to carbon dioxide in rats in vivo.
    Keefer LK; Streeter AJ; Leung LY; Perry WC; Hu HS; Baillie TA
    Drug Metab Dispos; 1987; 15(3):300-4. PubMed ID: 2886303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Sufficient Formaldehyde-to-Methanol Conversion by Organometallic Formaldehyde Dismutase Mimic.
    van der Waals D; Heim LE; Vallazza S; Gedig C; Deska J; Prechtl MH
    Chemistry; 2016 Aug; 22(33):11568-73. PubMed ID: 27380865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.