These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31639067)

  • 1. Robust hypergraph regularized non-negative matrix factorization for sample clustering and feature selection in multi-view gene expression data.
    Yu N; Gao YL; Liu JX; Wang J; Shang J
    Hum Genomics; 2019 Oct; 13(Suppl 1):46. PubMed ID: 31639067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correntropy-Based Hypergraph Regularized NMF for Clustering and Feature Selection on Multi-Cancer Integrated Data.
    Yu N; Wu MJ; Liu JX; Zheng CH; Xu Y
    IEEE Trans Cybern; 2021 Aug; 51(8):3952-3963. PubMed ID: 32603306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse robust graph-regularized non-negative matrix factorization based on correntropy.
    Wang CY; Gao YL; Liu JX; Dai LY; Shang J
    J Bioinform Comput Biol; 2021 Feb; 19(1):2050047. PubMed ID: 33410727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust capped norm dual hyper-graph regularized non-negative matrix tri-factorization.
    Yu J; Pan B; Yu S; Leung MF
    Math Biosci Eng; 2023 May; 20(7):12486-12509. PubMed ID: 37501452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Robust Manifold Graph Regularized Nonnegative Matrix Factorization Algorithm for Cancer Gene Clustering.
    Zhu R; Liu JX; Zhang YK; Guo Y
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29207477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Bi-Stochastic Graph Regularized Matrix Factorization for Data Clustering.
    Wang Q; He X; Jiang X; Li X
    IEEE Trans Pattern Anal Mach Intell; 2022 Jan; 44(1):390-403. PubMed ID: 32750807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hessian regularization based non-negative matrix factorization for gene expression data clustering.
    Liu X; Shi J; Wang C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4130-3. PubMed ID: 26737203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An NMF-L2,1-Norm Constraint Method for Characteristic Gene Selection.
    Wang D; Liu JX; Gao YL; Yu J; Zheng CH; Xu Y
    PLoS One; 2016; 11(7):e0158494. PubMed ID: 27428058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Principal Component Analysis Based On Hypergraph Regularization for Sample Clustering and Co-Characteristic Gene Selection.
    Gao YL; Wu MJ; Liu JX; Zheng CH; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2420-2430. PubMed ID: 33690124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-differential Gene Selection and Clustering Based on Graph Regularized Multi-View NMF in Cancer Genomic Data.
    Yu N; Gao YL; Liu JX; Shang J; Zhu R; Dai LY
    Genes (Basel); 2018 Nov; 9(12):. PubMed ID: 30487464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data.
    Ma Y; Hu X; He T; Jiang X
    Methods; 2016 Dec; 111():80-84. PubMed ID: 27339941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-view clustering via multi-manifold regularized non-negative matrix factorization.
    Zong L; Zhang X; Zhao L; Yu H; Zhao Q
    Neural Netw; 2017 Apr; 88():74-89. PubMed ID: 28214692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principal Component Analysis Based on Graph Laplacian and Double Sparse Constraints for Feature Selection and Sample Clustering on Multi-View Data.
    Wu MJ; Gao YL; Liu JX; Zhu R; Wang J
    Hum Hered; 2019; 84(1):47-58. PubMed ID: 31466072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Rank Subspace Clustering via Discrete Constraint and Hypergraph Regularization for Tumor Molecular Pattern Discovery.
    Liu J; Cheng Y; Wang X; Cui X; Kong Y; Du J
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1500-1512. PubMed ID: 29993749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data representation using robust nonnegative matrix factorization for edge computing.
    Yang Q; Chen J; Al-Nabhan N
    Math Biosci Eng; 2022 Jan; 19(2):2147-2178. PubMed ID: 35135245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HTRPCA: Hypergraph Regularized Tensor Robust Principal Component Analysis for Sample Clustering in Tumor Omics Data.
    Zhao YY; Jiao CN; Wang ML; Liu JX; Wang J; Zheng CH
    Interdiscip Sci; 2022 Mar; 14(1):22-33. PubMed ID: 34115312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparse Graph Regularization Non-Negative Matrix Factorization Based on Huber Loss Model for Cancer Data Analysis.
    Wang CY; Liu JX; Yu N; Zheng CH
    Front Genet; 2019; 10():1054. PubMed ID: 31824556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A truncated nuclear norm and graph-Laplacian regularized low-rank representation method for tumor clustering and gene selection.
    Liu Q
    BMC Bioinformatics; 2022 Jan; 22(Suppl 12):436. PubMed ID: 35057728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Graph Regularized NMF with Dissimilarity and Similarity Constraints for ScRNA-seq Data Clustering.
    Shu Z; Long Q; Zhang L; Yu Z; Wu XJ
    J Chem Inf Model; 2022 Dec; 62(23):6271-6286. PubMed ID: 36459053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-negative matrix factorization by maximizing correntropy for cancer clustering.
    Wang JJ; Wang X; Gao X
    BMC Bioinformatics; 2013 Mar; 14():107. PubMed ID: 23522344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.