These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31639226)

  • 1. A new insight into the mechanism for cytosolic lipid droplet degradation in senescent leaves.
    Zhang C; Qu Y; Lian Y; Chapman M; Chapman N; Xin J; Xin H; Liu L
    Physiol Plant; 2020 Apr; 168(4):835-844. PubMed ID: 31639226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultramicroscopy reveals that senescence induces in-situ and vacuolar degradation of plastoglobules in aging watermelon leaves.
    Liu L
    Micron; 2016 Jan; 80():135-44. PubMed ID: 26546968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural studies on the natural leaf senescence of Cinnamomum camphora.
    Cao J; Song Y; Wu H; Qin L; Hu L; Hao R
    Scanning; 2013; 35(5):336-43. PubMed ID: 23292543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells.
    Gidda SK; Park S; Pyc M; Yurchenko O; Cai Y; Wu P; Andrews DW; Chapman KD; Dyer JM; Mullen RT
    Plant Physiol; 2016 Apr; 170(4):2052-71. PubMed ID: 26896396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique Motifs and Length of Hairpin in Oleosin Target the Cytosolic Side of Endoplasmic Reticulum and Budding Lipid Droplet.
    Huang CY; Huang AHC
    Plant Physiol; 2017 Aug; 174(4):2248-2260. PubMed ID: 28611060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy.
    Ouahoud S; Fiet MD; Martínez-Montañés F; Ejsing CS; Kuss O; Roden M; Markgraf DF
    J Cell Sci; 2018 Jun; 131(11):. PubMed ID: 29678904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-occurrence of tannin and tannin-less vacuoles in sensitive plants.
    Fleurat-Lessard P; Béré E; Lallemand M; Dédaldéchamp F; Roblin G
    Protoplasma; 2016 May; 253(3):821-834. PubMed ID: 26103934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Born this way - Biogenesis of lipid droplets from specialized ER subdomains.
    Nettebrock NT; Bohnert M
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Jan; 1865(1):158448. PubMed ID: 31028912
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Doner NM; Seay D; Mehling M; Sun S; Gidda SK; Schmitt K; Braus GH; Ischebeck T; Chapman KD; Dyer JM; Mullen RT
    Front Plant Sci; 2021; 12():658961. PubMed ID: 33936146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions.
    Brocard L; Immel F; Coulon D; Esnay N; Tuphile K; Pascal S; Claverol S; Fouillen L; Bessoule JJ; Bréhélin C
    Front Plant Sci; 2017; 8():894. PubMed ID: 28611809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean.
    Otegui MS; Noh YS; Martínez DE; Vila Petroff MG; Staehelin LA; Amasino RM; Guiamet JJ
    Plant J; 2005 Mar; 41(6):831-44. PubMed ID: 15743448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The size matters: regulation of lipid storage by lipid droplet dynamics.
    Yu J; Li P
    Sci China Life Sci; 2017 Jan; 60(1):46-56. PubMed ID: 27981432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets.
    Sharma M; Recuero-Checa MA; Fan FY; Dean D
    Cell Microbiol; 2018 Feb; 20(2):. PubMed ID: 29117636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purified isolation of vacuoles from Sedum alfredii leaf-derived protoplasts.
    Gao XY; Liao XC; Wu RL; Liu T; Wang HX; Lu LL
    J Zhejiang Univ Sci B; 2017 Jan.; 18(1):85-88. PubMed ID: 28071001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant Lipid Droplets and Their Associated Proteins: Potential for Rapid Advances.
    Huang AHC
    Plant Physiol; 2018 Mar; 176(3):1894-1918. PubMed ID: 29269574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid structure in triolein lipid droplets.
    Chaban VV; Khandelia H
    J Phys Chem B; 2014 Sep; 118(35):10335-40. PubMed ID: 25133683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast.
    Vevea JD; Garcia EJ; Chan RB; Zhou B; Schultz M; Di Paolo G; McCaffery JM; Pon LA
    Dev Cell; 2015 Dec; 35(5):584-599. PubMed ID: 26651293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular Lipid Droplets in Vanilla Leaf Epidermis and Avocado Mesocarp Are Coated with Oleosins of Distinct Phylogenic Lineages.
    Huang MD; Huang AH
    Plant Physiol; 2016 Jul; 171(3):1867-78. PubMed ID: 27208281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open questions in lipid droplet biology.
    Ohsaki Y; Suzuki M; Fujimoto T
    Chem Biol; 2014 Jan; 21(1):86-96. PubMed ID: 24239006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells.
    Matile P; Ginsburg S; Schellenberg M; Thomas H
    Proc Natl Acad Sci U S A; 1988 Dec; 85(24):9529-32. PubMed ID: 16594008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.