BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 31639286)

  • 1. Nonconfinement Structure Revealed in Dion-Jacobson Type Quasi-2D Perovskite Expedites Interlayer Charge Transport.
    Yu S; Yan Y; Abdellah M; Pullerits T; Zheng K; Liang Z
    Small; 2019 Dec; 15(49):e1905081. PubMed ID: 31639286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation Phase Distribution of Ruddlesden-Popper Quasi-2D Perovskites with a Similarly Spaced Dion-Jacobson Phase.
    Hu M; Zhang Y; Meng N; Wang W; Lu Y; Dong J; Zhao S; Qiao B; Song D; Xu Z
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42706-42716. PubMed ID: 37646254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Study of Enhanced Out-of-Plane Transport Properties and Stability in Dion-Jacobson Two-Dimensional Perovskite Semiconductors for High-Performance Solar Cell Applications.
    Xu Z; Chen M; Liu SF
    J Phys Chem Lett; 2019 Jul; 10(13):3670-3675. PubMed ID: 31203625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient and Stable Dion-Jacobson Perovskite Solar Cells Enabled by Extended π-Conjugation of Organic Spacer.
    Xu Z; Lu D; Dong X; Chen M; Fu Q; Liu Y
    Adv Mater; 2021 Dec; 33(51):e2105083. PubMed ID: 34655111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orbital Interactions in 2D Dion-Jacobson Perovskites Using Oligothiophene-Based Semiconductor Spacers Enable Efficient Solar Cells.
    Dong X; Wang R; Gao Y; Ling Q; Hu Z; Chen M; Liu H; Liu Y
    Nano Lett; 2024 Jan; 24(1):261-269. PubMed ID: 38113224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress and challenges in layered two-dimensional hybrid perovskites.
    Mohanty PP; Ahuja R; Chakraborty S
    Nanotechnology; 2022 Apr; 33(29):. PubMed ID: 35390776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orbital Interactions between the Organic Semiconductor Spacer and the Inorganic Layer in Dion-Jacobson Perovskites Enable Efficient Solar Cells.
    Dong Y; Dong X; Lu D; Chen M; Zheng N; Wang R; Li Q; Xie Z; Liu Y
    Adv Mater; 2023 Jan; 35(3):e2205258. PubMed ID: 36325909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2D Hybrid Halide Perovskites: Structure, Properties, and Applications in Solar Cells.
    Wu G; Liang R; Zhang Z; Ge M; Xing G; Sun G
    Small; 2021 Oct; 17(43):e2103514. PubMed ID: 34590421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bication-Mediated Quasi-2D Halide Perovskites for High-Performance Flexible Photodetectors: From Ruddlesden-Popper Type to Dion-Jacobson Type.
    Lai Z; Dong R; Zhu Q; Meng Y; Wang F; Li F; Bu X; Kang X; Zhang H; Quan Q; Wang W; Wang F; Yip S; Ho JC
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39567-39577. PubMed ID: 32805871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-Noncovalent-Interaction-Stabilized Layered Dion-Jacobson Perovskite for Efficient Solar Cells.
    Lv G; Li L; Lu D; Xu Z; Dong Y; Li Q; Chang Z; Yin WJ; Liu Y
    Nano Lett; 2021 Jul; 21(13):5788-5797. PubMed ID: 34161102
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Gao L; Li X; Traoré B; Zhang Y; Fang J; Han Y; Even J; Katan C; Zhao K; Liu S; Kanatzidis MG
    J Am Chem Soc; 2021 Aug; 143(31):12063-12073. PubMed ID: 34342223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prominent Free Charges Tunneling Through Organic Interlayer of 2D Perovskites.
    Li W; Feng X; Guo K; Pan W; Li M; Liu L; Song J; He Y; Wei H
    Adv Mater; 2023 May; 35(18):e2211808. PubMed ID: 36758050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered 2D Halide Perovskites beyond the Ruddlesden-Popper Phase: Tailored Interlayer Chemistries for High-Performance Solar Cells.
    Gong J; Hao M; Zhang Y; Liu M; Zhou Y
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202112022. PubMed ID: 34761495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rise of quasi-2D Dion-Jacobson perovskites for photovoltaics.
    Chen J; Zhai Z; Liu Q; Zhou H
    Nanoscale Horiz; 2023 Nov; 8(12):1628-1651. PubMed ID: 37740351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Synergistic Effect of Additives for Formamidinium-Based Inverted Dion-Jacobson 2D Perovskite Solar Cells with Enhanced Photovoltaic Performance.
    Wu Y; Ren G; Lin W; Xiao L; Wu X; Yang C; Qi M; Luo Z; Zhang W; Liu Y; Min Y
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58286-58295. PubMed ID: 38052074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layered Low-Dimensional Ruddlesden-Popper and Dion-Jacobson Perovskites: From Material Properties to Photovoltaic Device Performance.
    Liu R; Hu X; Xu M; Ren H; Yu H
    ChemSusChem; 2023 Oct; 16(19):e202300736. PubMed ID: 37321966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of Spacer Size on Charge Transfer Excitons in Dion-Jacobson and Ruddlesden-Popper Layered Hybrid Perovskites.
    Fish GC; Terpstra AT; Dučinskas A; Almalki M; Carbone LC; Pfeifer L; Grätzel M; Moser JE; Milić JV
    J Phys Chem Lett; 2023 Jul; 14(27):6248-6254. PubMed ID: 37390042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional-Group-Induced Single Quantum Well Dion-Jacobson 2D Perovskite for Efficient and Stable Inverted Perovskite Solar Cells.
    Gong C; Chen X; Zeng J; Wang H; Li H; Qian Q; Zhang C; Zhuang Q; Yu X; Gong S; Yang H; Xu B; Chen J; Zang Z
    Adv Mater; 2024 Feb; 36(8):e2307422. PubMed ID: 38037894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight on the Stability of Thick Layers in 2D Ruddlesden-Popper and Dion-Jacobson Lead Iodide Perovskites.
    Vasileiadou ES; Wang B; Spanopoulos I; Hadar I; Navrotsky A; Kanatzidis MG
    J Am Chem Soc; 2021 Feb; 143(6):2523-2536. PubMed ID: 33534580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Distribution and Carrier Dynamics in Multiple-Ring Aromatic Spacer-Based Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells.
    Xu Z; Lu D; Liu F; Lai H; Wan X; Zhang X; Liu Y; Chen Y
    ACS Nano; 2020 Apr; 14(4):4871-4881. PubMed ID: 32243131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.