These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31639293)

  • 1. Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel.
    Hsu JP; Su TC; Peng PH; Hsu SC; Zheng MJ; Yeh LH
    ACS Nano; 2019 Nov; 13(11):13374-13381. PubMed ID: 31639293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.
    Yeh LH; Chen F; Chiou YT; Su YS
    Small; 2017 Dec; 13(48):. PubMed ID: 29063668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena.
    Liu W; Sun Y; Yan H; Ren Y; Song C; Wu Q
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32471139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse electrodialysis in bilayer nanochannels: salinity gradient-driven power generation.
    Long R; Kuang Z; Liu Z; Liu W
    Phys Chem Chem Phys; 2018 Mar; 20(10):7295-7302. PubMed ID: 29485149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating.
    Nekoubin N; Sadeghi A; Chakraborty S
    Langmuir; 2024 May; 40(19):10171-10183. PubMed ID: 38698764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gate-All-Around Nanopore Osmotic Power Generators.
    Tsutsui M; Hsu WL; Garoli D; Leong IW; Yokota K; Daiguji H; Kawai T
    ACS Nano; 2024 Jun; 18(23):15046-15054. PubMed ID: 38804145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels.
    Lin YC; Chen HH; Chu CW; Yeh LH
    Nano Lett; 2024 Sep; 24(37):11756-11762. PubMed ID: 39236070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mass transport properties and applications of nanochannels].
    Li Z; Wu Z; Xia X
    Se Pu; 2020 Oct; 38(10):1189-1196. PubMed ID: 34213115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-reversed ionic current rectification displayed by conically shaped nanochannel without any modification.
    Guo Z; Wang J; Ren J; Wang E
    Nanoscale; 2011 Sep; 3(9):3767-73. PubMed ID: 21826328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Euryhaline-Fish-Inspired Salinity Self-Adaptive Nanofluidic Diode Leads to High-Performance Blue Energy Harvesters.
    Hao J; Bao B; Zhou J; Cui Y; Chen X; Zhou J; Zhou Y; Jiang L
    Adv Mater; 2022 Aug; 34(31):e2203109. PubMed ID: 35673895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion.
    Awati A; Zhou S; Shi T; Zeng J; Yang R; He Y; Zhang X; Zeng H; Zhu D; Cao T; Xie L; Liu M; Kong B
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27075-27088. PubMed ID: 37235387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the performance of a cylindrical nanopore in osmotic power generation through designing the waveform of its inner surface.
    Liu CW; Hsu JP
    Phys Chem Chem Phys; 2023 Oct; 25(41):28363-28372. PubMed ID: 37842817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting.
    Bang KR; Kwon C; Lee H; Kim S; Cho ES
    ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation.
    Wang Y; Chen H; Zhai J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):41159-41168. PubMed ID: 34403239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sandwich "Ion Pool"-Structured Power Gating for Salinity Gradient Generation Devices.
    Fu L; Wang Y; Jiang J; Lu B; Zhai J
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):35197-35206. PubMed ID: 34266231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation Dependent Surface Charge Regulation in Gated Nanofluidic Devices.
    Fuest M; Rangharajan KK; Boone C; Conlisk AT; Prakash S
    Anal Chem; 2017 Feb; 89(3):1593-1601. PubMed ID: 28208271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Nanochannel Arrays Based on Flexible Montmorillonite Membranes.
    Liu ML; Huang M; Tian LY; Zhao LH; Ding B; Kong DB; Yang QH; Shao JJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44915-44923. PubMed ID: 30509069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.