These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31639896)

  • 1. Universal aspects of collective behavior in chemotactic systems.
    Rapp L; Zimmermann W
    Phys Rev E; 2019 Sep; 100(3-1):032609. PubMed ID: 31639896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active phase separation: A universal approach.
    Bergmann F; Rapp L; Zimmermann W
    Phys Rev E; 2018 Aug; 98(2-1):020603. PubMed ID: 30253463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic extension of the Cahn-Hilliard model for motility-induced phase separation.
    Rapp L; Bergmann F; Zimmermann W
    Eur Phys J E Soft Matter; 2019 May; 42(5):57. PubMed ID: 31089905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On system-spanning demixing properties of cell polarization.
    Bergmann F; Zimmermann W
    PLoS One; 2019; 14(6):e0218328. PubMed ID: 31226118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic Chemotaxis and Collective Behavior in Active Matter.
    Liebchen B; Löwen H
    Acc Chem Res; 2018 Dec; 51(12):2982-2990. PubMed ID: 30375857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Chemotaxis of Self-Phoretic Active Colloids: Collective Behavior.
    Stark H
    Acc Chem Res; 2018 Nov; 51(11):2681-2688. PubMed ID: 30346724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic phase separation: from coarsening to turbulence via structure formation.
    Golovin AA; Pismen LM
    Chaos; 2004 Sep; 14(3):845-54. PubMed ID: 15446995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarsening dynamics of binary liquids with active rotation.
    Sabrina S; Spellings M; Glotzer SC; Bishop KJ
    Soft Matter; 2015 Nov; 11(43):8409-16. PubMed ID: 26345231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydrodynamic-stochastic model of chemotactic ciliated microorganisms.
    Maity R; Burada PS
    Eur Phys J E Soft Matter; 2019 Feb; 42(2):20. PubMed ID: 30788619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of continuum angiogenesis models.
    Martinson WD; Ninomiya H; Byrne HM; Maini PK
    J Math Biol; 2021 Feb; 82(4):21. PubMed ID: 33619643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clusters, asters, and collective oscillations in chemotactic colloids.
    Saha S; Golestanian R; Ramaswamy S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062316. PubMed ID: 25019785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a chemotactic sensitivity in a coupled system.
    Fister KR; McCarthy ML
    Math Med Biol; 2008 Sep; 25(3):215-32. PubMed ID: 18632725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical analysis of cell-target encounter rates in three dimensions. Effect of chemotaxis.
    Charnick SB; Lauffenburger DA
    Biophys J; 1990 May; 57(5):1009-23. PubMed ID: 2340340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic Asymmetry versus Dissipation in the Evolution of Chemical Systems as Exemplified by Single Enzyme Chemotaxis.
    Mandal NS; Sen A; Astumian RD
    J Am Chem Soc; 2023 Mar; 145(10):5730-5738. PubMed ID: 36867055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy production in the nonreciprocal Cahn-Hilliard model.
    Suchanek T; Kroy K; Loos SAM
    Phys Rev E; 2023 Dec; 108(6-1):064610. PubMed ID: 38243463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective chemotaxis in a Voronoi model for confluent clusters.
    Lawson-Keister E; Manning ML
    Biophys J; 2022 Dec; 121(23):4624-4634. PubMed ID: 36299235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Brownian agents with concentration-dependent chemotactic sensitivity.
    Meyer M; Schimansky-Geier L; Romanczuk P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022711. PubMed ID: 25353513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation.
    Maini PK; Myerscough MR; Winters KH; Murray JD
    Bull Math Biol; 1991; 53(5):701-19. PubMed ID: 1933036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A user's guide to PDE models for chemotaxis.
    Hillen T; Painter KJ
    J Math Biol; 2009 Jan; 58(1-2):183-217. PubMed ID: 18626644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.