These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31639983)

  • 1. Power and efficiency of a thermal engine with a coherent bath.
    Guff T; Daryanoosh S; Baragiola BQ; Gilchrist A
    Phys Rev E; 2019 Sep; 100(3-1):032129. PubMed ID: 31639983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine.
    Türkpençe D; Müstecaplıoğlu ÖE
    Phys Rev E; 2016 Jan; 93(1):012145. PubMed ID: 26871061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power enhancement of heat engines via correlated thermalization in a three-level "working fluid".
    Gelbwaser-Klimovsky D; Niedenzu W; Brumer P; Kurizki G
    Sci Rep; 2015 Sep; 5():14413. PubMed ID: 26394838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum heat engine power can be increased by noise-induced coherence.
    Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantum heat engine driven by atomic collisions.
    Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A
    Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum heat engine with coupled superconducting resonators.
    Hardal AÜC; Aslan N; Wilson CM; Müstecaplıoğlu ÖE
    Phys Rev E; 2017 Dec; 96(6-1):062120. PubMed ID: 29347310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance limits of multilevel and multipartite quantum heat machines.
    Niedenzu W; Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042123. PubMed ID: 26565184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat Modulation on Target Thermal Bath via Coherent Auxiliary Bath.
    Yu WL; Li T; Li H; Zhang Y; Zou J; Wang YD
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine.
    Purkait C; Chand S; Biswas A
    Phys Rev E; 2024 Apr; 109(4-1):044128. PubMed ID: 38755864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracting work from a single heat bath via vanishing quantum coherence.
    Scully MO; Zubairy MS; Agarwal GS; Walther H
    Science; 2003 Feb; 299(5608):862-4. PubMed ID: 12511655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE; Xu D; Cao J
    Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction.
    Lee S; Ha M; Park JM; Jeong H
    Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.
    Kato A; Tanimura Y
    J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Photovoltaic Cells Driven by Photon Pulses.
    Oh S; Park JJ; Nha H
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-time performance of a single-ion quantum Otto engine.
    Chand S; Dasgupta S; Biswas A
    Phys Rev E; 2021 Mar; 103(3-1):032144. PubMed ID: 33862721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolated quantum heat engine.
    Fialko O; Hallwood DW
    Phys Rev Lett; 2012 Feb; 108(8):085303. PubMed ID: 22463540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine.
    Dann R; Kosloff R; Salamon P
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superconducting-like Heat Current: Effective Cancellation of Current-Dissipation Trade-Off by Quantum Coherence.
    Tajima H; Funo K
    Phys Rev Lett; 2021 Nov; 127(19):190604. PubMed ID: 34797134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.