These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31639983)

  • 21. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times.
    Purkait C; Biswas A
    Phys Rev E; 2023 May; 107(5-1):054110. PubMed ID: 37329072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Algorithmic quantum heat engines.
    Köse E; Çakmak S; Gençten A; Kominis IK; Müstecaplıoğlu ÖE
    Phys Rev E; 2019 Jul; 100(1-1):012109. PubMed ID: 31499932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of a strongly coupled quantum heat engine-Computing bath observables from the hierarchy of pure states.
    Boettcher V; Hartmann R; Beyer K; Strunz WT
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38436445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Periodically Driven Quantum Thermal Machines from Warming up to Limit Cycle.
    Liu J; Jung KA; Segal D
    Phys Rev Lett; 2021 Nov; 127(20):200602. PubMed ID: 34860071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classical emulation of quantum-coherent thermal machines.
    González JO; Palao JP; Alonso D; Correa LA
    Phys Rev E; 2019 Jun; 99(6-1):062102. PubMed ID: 31330638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A single-atom heat engine.
    Roßnagel J; Dawkins ST; Tolazzi KN; Abah O; Lutz E; Schmidt-Kaler F; Singer K
    Science; 2016 Apr; 352(6283):325-9. PubMed ID: 27081067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum synchronization in nanoscale heat engines.
    Jaseem N; Hajdušek M; Vedral V; Fazio R; Kwek LC; Vinjanampathy S
    Phys Rev E; 2020 Feb; 101(2-1):020201. PubMed ID: 32168700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying Memory Capacity as a Quantum Thermodynamic Resource.
    Narasimhachar V; Thompson J; Ma J; Gour G; Gu M
    Phys Rev Lett; 2019 Feb; 122(6):060601. PubMed ID: 30822091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Violating the thermodynamic uncertainty relation in the three-level maser.
    Kalaee AAS; Wacker A; Potts PP
    Phys Rev E; 2021 Jul; 104(1):L012103. PubMed ID: 34412265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of an active heat engine.
    Gronchi G; Puglisi A
    Phys Rev E; 2021 May; 103(5-1):052134. PubMed ID: 34134299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bounds on fluctuations for finite-time quantum Otto cycle.
    Saryal S; Agarwalla BK
    Phys Rev E; 2021 Jun; 103(6):L060103. PubMed ID: 34271746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K
    Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collective effects on the performance and stability of quantum heat engines.
    Souza LDS; Manzano G; Fazio R; Iemini F
    Phys Rev E; 2022 Jul; 106(1-1):014143. PubMed ID: 35974546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic heat engine using an active particle.
    Kumari A; Pal PS; Saha A; Lahiri S
    Phys Rev E; 2020 Mar; 101(3-1):032109. PubMed ID: 32289893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights from inside the spinodal: Bridging thermalization time scales with smoothed particle hydrodynamics.
    Pütz M; Nielaba P
    Phys Rev E; 2016 Aug; 94(2-1):022616. PubMed ID: 27627369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overcoming power-efficiency tradeoff in a micro heat engine by engineered system-bath interactions.
    Krishnamurthy S; Ganapathy R; Sood AK
    Nat Commun; 2023 Oct; 14(1):6842. PubMed ID: 37891165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.