These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31639992)

  • 1. Selection of sequence motifs and generative Hopfield-Potts models for protein families.
    Shimagaki K; Weigt M
    Phys Rev E; 2019 Sep; 100(3-1):032128. PubMed ID: 31639992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse generative modeling via parameter reduction of Boltzmann machines: Application to protein-sequence families.
    Barrat-Charlaix P; Muntoni AP; Shimagaki K; Weigt M; Zamponi F
    Phys Rev E; 2021 Aug; 104(2-1):024407. PubMed ID: 34525554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From principal component to direct coupling analysis of coevolution in proteins: low-eigenvalue modes are needed for structure prediction.
    Cocco S; Monasson R; Weigt M
    PLoS Comput Biol; 2013; 9(8):e1003176. PubMed ID: 23990764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The generative capacity of probabilistic protein sequence models.
    McGee F; Hauri S; Novinger Q; Vucetic S; Levy RM; Carnevale V; Haldane A
    Nat Commun; 2021 Nov; 12(1):6302. PubMed ID: 34728624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking Inverse Statistical Approaches for Protein Structure and Design with Exactly Solvable Models.
    Jacquin H; Gilson A; Shakhnovich E; Cocco S; Monasson R
    PLoS Comput Biol; 2016 May; 12(5):e1004889. PubMed ID: 27177270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Pairwise Coevolutionary Models Capture the Collective Residue Variability in Proteins?
    Figliuzzi M; Barrat-Charlaix P; Weigt M
    Mol Biol Evol; 2018 Apr; 35(4):1018-1027. PubMed ID: 29351669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACE: adaptive cluster expansion for maximum entropy graphical model inference.
    Barton JP; De Leonardis E; Coucke A; Cocco S
    Bioinformatics; 2016 Oct; 32(20):3089-3097. PubMed ID: 27329863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Structures and Interactions from Genome Information.
    Miyazawa S
    Adv Exp Med Biol; 2018; 1105():123-152. PubMed ID: 30617827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote homology search with hidden Potts models.
    Wilburn GW; Eddy SR
    PLoS Comput Biol; 2020 Nov; 16(11):e1008085. PubMed ID: 33253143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphical models of residue coupling in protein families.
    Thomas J; Ramakrishnan N; Bailey-Kellogg C
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(2):183-97. PubMed ID: 18451428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of multiple-sequence-alignment depth on Potts statistical models of protein covariation.
    Haldane A; Levy RM
    Phys Rev E; 2019 Mar; 99(3-1):032405. PubMed ID: 30999494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing sequence-dependent protein models using coevolutionary information.
    Cheng RR; Raghunathan M; Noel JK; Onuchic JN
    Protein Sci; 2016 Jan; 25(1):111-22. PubMed ID: 26223372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning protein constitutive motifs from sequence data.
    Tubiana J; Cocco S; Monasson R
    Elife; 2019 Mar; 8():. PubMed ID: 30857591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning in biological physics: From biomolecular prediction to design.
    Martin J; Lequerica Mateos M; Onuchic JN; Coluzza I; Morcos F
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311807121. PubMed ID: 38913893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models.
    Ekeberg M; Lövkvist C; Lan Y; Weigt M; Aurell E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012707. PubMed ID: 23410359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural propensities of kinase family proteins from a Potts model of residue co-variation.
    Haldane A; Flynn WF; He P; Vijayan RS; Levy RM
    Protein Sci; 2016 Aug; 25(8):1378-84. PubMed ID: 27241634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generative power of a protein language model trained on multiple sequence alignments.
    Sgarbossa D; Lupo U; Bitbol AF
    Elife; 2023 Feb; 12():. PubMed ID: 36734516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction.
    Vorberg S; Seemayer S; Söding J
    PLoS Comput Biol; 2018 Nov; 14(11):e1006526. PubMed ID: 30395601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning generative models for protein fold families.
    Balakrishnan S; Kamisetty H; Carbonell JG; Lee SI; Langmead CJ
    Proteins; 2011 Apr; 79(4):1061-78. PubMed ID: 21268112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of statistical methods for function prediction of protein motifs.
    Tao T; Zhai CX; Lu X; Fang H
    Appl Bioinformatics; 2004; 3(2-3):115-24. PubMed ID: 15693737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.