These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31640057)

  • 1. Dynamics of groups of magnetically driven artificial microswimmers.
    Buzhardt J; Tallapragada P
    Phys Rev E; 2019 Sep; 100(3-1):033106. PubMed ID: 31640057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetically driven omnidirectional artificial microswimmers.
    Vilfan M; Osterman N; Vilfan A
    Soft Matter; 2018 May; 14(17):3415-3422. PubMed ID: 29670984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion and mixing for multiple ferromagnetic microswimmers.
    Gilbert AD; Ogrin FY; Petrov PG; Winlove CP
    Eur Phys J E Soft Matter; 2011 Nov; 34(11):121. PubMed ID: 22101507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-Chemistry-Mediated Control of Individual Magnetic Helical Microswimmers in a Swarm.
    Wang X; Hu C; Schurz L; De Marco C; Chen X; Pané S; Nelson BJ
    ACS Nano; 2018 Jun; 12(6):6210-6217. PubMed ID: 29799724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling rigid magnetically rotated microswimmers: rotation axes, bistability, and controllability.
    Meshkati F; Fu HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063006. PubMed ID: 25615186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base flow decomposition for complex moving objects in linear hydrodynamics: Application to helix-shaped flagellated microswimmers.
    Zhang J; Chinappi M; Biferale L
    Phys Rev E; 2021 Feb; 103(2-1):023109. PubMed ID: 33736027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields.
    Küchler N; Löwen H; Menzel AM
    Phys Rev E; 2016 Feb; 93(2):022610. PubMed ID: 26986380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetization directions and geometries of helical microswimmers for linear velocity-frequency response.
    Fu HC; Jabbarzadeh M; Meshkati F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043011. PubMed ID: 25974584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lorentz Force-Driven Autonomous Janus Swimmers.
    Salinas G; Tieriekhov K; Garrigue P; Sojic N; Bouffier L; Kuhn A
    J Am Chem Soc; 2021 Aug; 143(32):12708-12714. PubMed ID: 34343427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to cooperate for low-Reynolds-number swimming: a model problem for gait coordination.
    Liu Y; Zou Z; Pak OS; Tsang ACH
    Sci Rep; 2023 Jun; 13(1):9397. PubMed ID: 37296306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobicity Influence on Swimming Performance of Magnetically Driven Miniature Helical Swimmers.
    Ye C; Liu J; Wu X; Wang B; Zhang L; Zheng Y; Xu T
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30845732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ewald sum for hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    J Chem Phys; 2018 Oct; 149(14):144110. PubMed ID: 30316279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between comoving magnetic microswimmers.
    Keaveny EE; Maxey MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041910. PubMed ID: 18517659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion planning and motility maps for flagellar microswimmers.
    Cicconofri G; DeSimone A
    Eur Phys J E Soft Matter; 2016 Jul; 39(7):72. PubMed ID: 27450653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid flow induced by helical microswimmers in bulk and near walls.
    Pal M; Fouxon I; Leshansky AM; Ghosh A
    Phys Rev Res; 2022 Jul; 4(3):033069. PubMed ID: 37275181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Brownian Torque in a Magnetically-Driven Rotating Microsystem.
    Romodina MN; Lyubin EV; Fedyanin AA
    Sci Rep; 2016 Feb; 6():21212. PubMed ID: 26876334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic microchains and microswimmers in an oscillating magnetic field.
    Ido Y; Li YH; Tsutsumi H; Sumiyoshi H; Chen CY
    Biomicrofluidics; 2016 Jan; 10(1):011902. PubMed ID: 26858808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic rotlet dipole driven by spinning chiral liquid crystal droplets.
    Yamamoto T; Sano M
    Phys Rev E; 2019 Feb; 99(2-1):022704. PubMed ID: 30934310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Propulsion of Two-Dimensional Microswimmers in a Precessing Magnetic Field.
    Tottori S; Nelson BJ
    Small; 2018 Jun; 14(24):e1800722. PubMed ID: 29749100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.