These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 31640060)
1. Spatial analog of the two-frequency torus breakup in a nonlinear system of reactive miscible fluids. Bratsun D Phys Rev E; 2019 Sep; 100(3-1):031104. PubMed ID: 31640060 [TBL] [Abstract][Full Text] [Related]
2. Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids. Bratsun D; Mizev A; Mosheva E; Kostarev K Phys Rev E; 2017 Nov; 96(5-1):053106. PubMed ID: 29347711 [TBL] [Abstract][Full Text] [Related]
3. Concentration-dependent diffusion instability in reactive miscible fluids. Bratsun D; Kostarev K; Mizev A; Mosheva E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):011003. PubMed ID: 26274115 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear development of convective patterns driven by a neutralization reaction in immiscible two-layer systems. Bratsun D; Mizev A; Utochkin V; Nekrasov S; Shmyrova A Philos Trans A Math Phys Eng Sci; 2023 Apr; 381(2245):20220178. PubMed ID: 36842984 [TBL] [Abstract][Full Text] [Related]
5. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell. Bunton PH; Tullier MP; Meiburg E; Pojman JA Chaos; 2017 Oct; 27(10):104614. PubMed ID: 29092415 [TBL] [Abstract][Full Text] [Related]
6. Thermal effects on the diffusive layer convection instability of an exothermic acid-base reaction front. Almarcha C; Trevelyan PM; Grosfils P; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033009. PubMed ID: 24125346 [TBL] [Abstract][Full Text] [Related]
7. Numerical study of miscible fingering in a time-dependent gap Hele-Shaw cell. Chen CY; Chen CH; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056304. PubMed ID: 16089646 [TBL] [Abstract][Full Text] [Related]
8. Chemical control of dissolution-driven convection in partially miscible systems: nonlinear simulations and experiments. Budroni MA; Thomas C; De Wit A Phys Chem Chem Phys; 2017 Mar; 19(11):7936-7946. PubMed ID: 28262876 [TBL] [Abstract][Full Text] [Related]
9. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature. García Casado G; Tofaletti L; Müller D; D'Onofrio A J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215 [TBL] [Abstract][Full Text] [Related]
10. Influence of temperature on linear stability in buoyancy-driven fingering of reaction-diffusion fronts. Levitán D; D'Onofrio A Chaos; 2012 Sep; 22(3):037107. PubMed ID: 23020498 [TBL] [Abstract][Full Text] [Related]
11. Radial viscous fingering in miscible Hele-Shaw flows: a numerical study. Chen CY; Huang CW; Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016306. PubMed ID: 18764049 [TBL] [Abstract][Full Text] [Related]
12. Buoyancy-driven instability of an autocatalytic reaction front in a Hele-Shaw cell. Martin J; Rakotomalala N; Salin D; Böckmann M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051605. PubMed ID: 12059568 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear dynamics of thin liquid films consisting of two miscible components. Borcia R; Borcia ID; Bestehorn M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056319. PubMed ID: 23214887 [TBL] [Abstract][Full Text] [Related]
14. Capillary and geometrically driven fingering instability in nonflat Hele-Shaw cells. Brandão R; Miranda JA Phys Rev E; 2017 Mar; 95(3-1):033104. PubMed ID: 28415178 [TBL] [Abstract][Full Text] [Related]
15. Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls. D'Hernoncourt J; Kalliadasis S; De Wit A J Chem Phys; 2005 Dec; 123(23):234503. PubMed ID: 16392927 [TBL] [Abstract][Full Text] [Related]
16. Convection of a colloidal suspension in a Hele-Shaw cell. Smorodin BL; Cherepanov IN; Ishutov SN; Myznikova BI Eur Phys J E Soft Matter; 2017 Feb; 40(2):18. PubMed ID: 28213759 [TBL] [Abstract][Full Text] [Related]
17. Numerical study of pattern formation in miscible rotating Hele-Shaw flows. Chen CY; Chen CH; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046306. PubMed ID: 16711928 [TBL] [Abstract][Full Text] [Related]
18. Convection-Induced Fingering Fronts in the Chlorite-Trithionate Reaction. Liu Y; Zhou W; Zheng T; Zhao Y; Gao Q; Pan C; Horváth AK J Phys Chem A; 2016 Apr; 120(16):2514-20. PubMed ID: 27059304 [TBL] [Abstract][Full Text] [Related]
19. Convective instabilities derived from dissipation of chemical energy. Simoyi RH Chaos; 2019 Aug; 29(8):083136. PubMed ID: 31472521 [TBL] [Abstract][Full Text] [Related]
20. A + B → C reaction fronts in Hele-Shaw cells under modulated gravitational acceleration. Eckert K; Rongy L; De Wit A Phys Chem Chem Phys; 2012 May; 14(20):7337-45. PubMed ID: 22523751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]