BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31640084)

  • 21. Identification of key candidate genes, pathways and related prognostic values in ER-negative/HER2-negative breast cancer by bioinformatics analysis.
    Shao N; Yuan K; Zhang Y; Yun Cheang T; Li J; Lin Y
    J BUON; 2018; 23(4):891-901. PubMed ID: 30358191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinformatics analysis revealing prognostic significance of TIMP2 gene in breast cancer.
    Chen WQ; Yang SJ; Xu WX; Deng F; Wang DD; Tang JH
    Medicine (Baltimore); 2021 Oct; 100(42):e27489. PubMed ID: 34678879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. KLF4 and NANOG are prognostic biomarkers for triple-negative breast cancer.
    Nagata T; Shimada Y; Sekine S; Moriyama M; Hashimoto I; Matsui K; Okumura T; Hori T; Imura J; Tsukada K
    Breast Cancer; 2017 Mar; 24(2):326-335. PubMed ID: 27300169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The prognostic value of Piezo1 in breast cancer patients with various clinicopathological features.
    Xu H; Chen Z; Li C
    Anticancer Drugs; 2021 Apr; 32(4):448-455. PubMed ID: 33559992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FBXO32 suppresses breast cancer tumorigenesis through targeting KLF4 to proteasomal degradation.
    Zhou H; Liu Y; Zhu R; Ding F; Wan Y; Li Y; Liu Z
    Oncogene; 2017 Jun; 36(23):3312-3321. PubMed ID: 28068319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of differentially expressed genes between triple and non-triple-negative breast cancer using bioinformatics analysis.
    Zhai Q; Li H; Sun L; Yuan Y; Wang X
    Breast Cancer; 2019 Nov; 26(6):784-791. PubMed ID: 31197620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinformatics Analysis of Expression and Alterations of BARD1 in Breast Cancer.
    Chen YZ; Zuo D; Ren HL; Fan SJ; Ying G
    Technol Cancer Res Treat; 2019; 18():1533033819892260. PubMed ID: 31808361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The kruppel-like factor (KLF) family, diseases, and physiological events.
    Yuce K; Ozkan AI
    Gene; 2024 Feb; 895():148027. PubMed ID: 38000704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prognostic significance of NANOG and KLF4 for breast cancer.
    Nagata T; Shimada Y; Sekine S; Hori R; Matsui K; Okumura T; Sawada S; Fukuoka J; Tsukada K
    Breast Cancer; 2014 Jan; 21(1):96-101. PubMed ID: 22528804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CMTM5/7 are biomarkers and prognostic factors in human breast carcinoma.
    Wu J
    Cancer Biomark; 2020; 29(1):89-99. PubMed ID: 32568178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the prognostic significance of solute carrier (SLC) family 39 genes in breast cancer.
    Liu L; Yang J; Wang C
    Biosci Rep; 2020 Aug; 40(8):. PubMed ID: 32744318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Screening of the novel immune-suppressive biomarkers of TMED family and whether knockdown of TMED2/3/4/9 inhibits cell migration and invasion in breast cancer.
    Fang Z; Song YX; Wo GQ; Zhou HL; Li L; Yang SY; Chen X; Zhang J; Tang JH
    Ann Transl Med; 2022 Dec; 10(23):1280. PubMed ID: 36618780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LEP as a potential biomarker in prognosis of breast cancer: Systemic review and meta analyses (PRISMA).
    Jin TY; Saindane M; Park KS; Kim S; Nam S; Yoo Y; Yang JH; Yun I
    Medicine (Baltimore); 2021 Aug; 100(33):e26896. PubMed ID: 34414945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mining the prognostic significance of the GINS2 gene in human breast cancer using bioinformatics analysis.
    Yu S; Zhu L; Xie P; Jiang S; Wang K; Liu Y; He J; Ren Y
    Oncol Lett; 2020 Aug; 20(2):1300-1310. PubMed ID: 32724372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Five miRNAs-mediated PIEZO2 downregulation, accompanied with activation of Hedgehog signaling pathway, predicts poor prognosis of breast cancer.
    Lou W; Liu J; Ding B; Jin L; Xu L; Li X; Chen J; Fan W
    Aging (Albany NY); 2019 May; 11(9):2628-2652. PubMed ID: 31058608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CLIP4 Shows Putative Tumor Suppressor Characteristics in Breast Cancer: An Integrated Analysis.
    Fan Y; He L; Wang Y; Fu S; Han Y; Fan J; Wen Q
    Front Mol Biosci; 2020; 7():616190. PubMed ID: 33575272
    [No Abstract]   [Full Text] [Related]  

  • 37. Prediction and Identification of Krüppel-Like Transcription Factors by Machine Learning Method.
    Liao Z; Wang X; Chen X; Zou Q
    Comb Chem High Throughput Screen; 2017; 20(7):594-602. PubMed ID: 28292252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of KLF transcription factor in the regulation of cancer progression.
    Li ZY; Zhu YX; Chen JR; Chang X; Xie ZZ
    Biomed Pharmacother; 2023 Jun; 162():114661. PubMed ID: 37068333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclear factor I-C regulates E-cadherin via control of KLF4 in breast cancer.
    Lee HK; Lee DS; Park JC
    BMC Cancer; 2015 Mar; 15():113. PubMed ID: 25879941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical Value of miR-101-3p and Biological Analysis of its Prospective Targets in Breast Cancer: A Study Based on The Cancer Genome Atlas (TCGA) and Bioinformatics.
    Li CY; Xiong DD; Huang CQ; He RQ; Liang HW; Pan DH; Wang HL; Wang YW; Zhu HW; Chen G
    Med Sci Monit; 2017 Apr; 23():1857-1871. PubMed ID: 28416776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.