These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31640156)

  • 1. A Way to Predict Gold Nanoparticles/Polymer Hybrid Microgel Agglomeration Based on Rheological Studies.
    Echeverría C; Mijangos C
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31640156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UCST-like hybrid PAAm-AA/Fe3O4 microgels. Effect of Fe3O4 nanoparticles on morphology, thermosensitivity and elasticity.
    Echeverria C; Mijangos C
    Langmuir; 2011 Jul; 27(13):8027-35. PubMed ID: 21630668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology Applied to Microgels: Brief (Revision of the) State of the Art.
    Echeverría C; Mijangos C
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermogelling Behaviors of Aqueous Poly(N-Isopropylacrylamide-co-2-Hydroxyethyl Methacrylate) Microgel-Silica Nanoparticle Composite Dispersions.
    Hwang BS; Kim JS; Kim JM; Shim TS
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical aging and phase behavior of multiresponsive microgel colloidal dispersions.
    Meng Z; Cho JK; Breedveld V; Lyon LA
    J Phys Chem B; 2009 Apr; 113(14):4590-9. PubMed ID: 19298093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic behavior and in vivo release study of microgel dispersions with inverse thermoreversible gelation.
    Zhou J; Wang G; Zou L; Tang L; Marquez M; Hu Z
    Biomacromolecules; 2008 Jan; 9(1):142-8. PubMed ID: 18067257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoresponsive Poly(
    Echeverría C; Aragón-Gutiérrez A; Fernández-García M; Muñoz-Bonilla A; López D
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal structures of the hydrogels formed in situ from poly(N-isopropylacrylamide) microgel dispersions.
    Liao W; Zhang Y; Guan Y; Zhu XX
    Langmuir; 2012 Jul; 28(29):10873-80. PubMed ID: 22769973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microrheology of thermoresponsive poly(N-isopropylacrylamide) microgel dispersions near a substrate surface.
    Liu W; Zhu Y; Zhang T; Zhu H; He C; Ngai T
    J Colloid Interface Sci; 2021 Sep; 597():104-113. PubMed ID: 33866206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium.
    Dalmont H; Pinprayoon O; Saunders BR
    Langmuir; 2008 Mar; 24(6):2834-40. PubMed ID: 18290684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microgel particles containing methacrylic acid: pH-triggered swelling behaviour and potential for biomaterial application.
    Lally S; Mackenzie P; LeMaitre CL; Freemont TJ; Saunders BR
    J Colloid Interface Sci; 2007 Dec; 316(2):367-75. PubMed ID: 17765913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Gold Nanoparticle Size on Regulated Catalytic Activity of Temperature-Responsive Polymer-Gold Nanoparticle Hybrid Microgels.
    Pongsanon P; Kawamura A; Kawasaki H; Miyata T
    Gels; 2024 May; 10(6):. PubMed ID: 38920904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetric and asymmetric adsorption of pH-responsive gold nanoparticles onto microgel particles and dispersion characterisation.
    Bradley M; Garcia-Risueño BS
    J Colloid Interface Sci; 2011 Mar; 355(2):321-7. PubMed ID: 21215415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft water-soluble microgel dispersions: structure and rheology.
    Omari A; Tabary R; Rousseau D; Calderon FL; Monteil J; Chauveteau G
    J Colloid Interface Sci; 2006 Oct; 302(2):537-46. PubMed ID: 16928380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart microgel-metal hybrid particles of PNIPAM-co-PAA@AgAu: synthesis, characterizations and modulated catalytic activity.
    Bhol P; Mohanty PS
    J Phys Condens Matter; 2020 Feb; 33(8):084002. PubMed ID: 33017813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Dots Embedded Hybrid Microgel with Phenylboronic Acid as Monomer for Fluorescent Glucose Sensing and Glucose-Triggered Insulin Release at Physiological pH.
    Zhu J; Liu W; Zhang B; Zhou D; Fan X; Wang X; Liu X
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of NIPMAM based polymer microgel network assisted rhodium nanoparticles for reductive degradation of toxic azo dyes.
    Iqbal S; Iqbal N; Musaddiq S; Farooqi ZH; Habila MA; Wabaidur SM; Iqbal A
    Heliyon; 2024 Feb; 10(3):e25385. PubMed ID: 38356584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM) Microgel Particle Induced Deformations of Tissue-Mimicking Phantom by Ultrasound Stimulation.
    Joshi A; Nandi S; Chester D; Brown AC; Muller M
    Langmuir; 2018 Jan; 34(4):1457-1465. PubMed ID: 29257896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-functional MOFs-based hybrid microgel advances aqueous lubrication and anti-inflammation.
    Wu W; Liu J; Lin X; He Z; Zhang H; Ji L; Gong P; Zhou F; Liu W
    J Colloid Interface Sci; 2023 Aug; 644():200-210. PubMed ID: 37116318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of multicomponent microgels by selective deposition of nanomaterials.
    Hain J; Schrinner M; Lu Y; Pich A
    Small; 2008 Nov; 4(11):2016-24. PubMed ID: 18949794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.