These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31640209)

  • 1. Characterization and Quantitative Analysis of Crack Precursor Size for Rubber Composites.
    Guo H; Li F; Wen S; Yang H; Zhang L
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing Distributions of Tensile Strength and Crack Precursor Size to Evaluate Filler Dispersion Effects and Reliability of Rubber.
    Robertson CG; Tunnicliffe LB; Maciag L; Bauman MA; Miller K; Herd CR; Mars WV
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31941088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Temperature on the Tear Fracture and Fatigue Life of Carbon-Black-Filled Rubber.
    Luo W; Li M; Huang Y; Yin B; Hu X
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Fatigue and Durability Properties of Natural Rubber Composites Reinforced with Carbon Nanotubes and Graphene Oxide.
    Guo H; Ji P; Halász IZ; Pirityi DZ; Bárány T; Xu Z; Zheng L; Zhang L; Liu L; Wen S
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33339308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Fatigue Life Model for Rubber Materials Based on Fracture Mechanics.
    Qiu X; Yin H; Xing Q; Jin Q
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic aspects of fatigue crack growth behavior in resin based dental restorative composites.
    Shah MB; Ferracane JL; Kruzic JJ
    Dent Mater; 2009 Jul; 25(7):909-16. PubMed ID: 19233460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Friction, Abrasion and Crack Growth Behavior of In-Situ and Ex-Situ Silica Filled Rubber Composites.
    Vaikuntam SR; Bhagavatheswaran ES; Xiang F; Wießner S; Heinrich G; Das A; Stöckelhuber KW
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Experimental Parameters on Fatigue Crack Growth and Heat Build-Up in Rubber.
    Stadlbauer F; Koch T; Archodoulaki VM; Planitzer F; Fidi W; Holzner A
    Materials (Basel); 2013 Nov; 6(12):5502-5516. PubMed ID: 28788405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue of tooth-colored restoratives in aqueous environment.
    Kawakami Y; Takeshige F; Hayashi M; Ebisu S
    Dent Mater J; 2007 Jan; 26(1):1-6. PubMed ID: 17410886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between dynamic fatigue crack propagation properties and viscoelasticity of natural rubber/silicone rubber composites.
    Han Q; Zhang L; Wu Y
    RSC Adv; 2019 Sep; 9(51):29813-29820. PubMed ID: 35559120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue behavior of resin composites in aqueous environments.
    Takeshige F; Kawakami Y; Hayashi M; Ebisu S
    Dent Mater; 2007 Jul; 23(7):893-9. PubMed ID: 17007919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristic Tearing Energy and Fatigue Crack Propagation of Filled Natural Rubber.
    Rong J; Yang J; Huang Y; Luo W; Hu X
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain energy-based rubber fatigue life prediction under the influence of temperature.
    Zhang J; Xue F; Wang Y; Zhang X; Han S
    R Soc Open Sci; 2018 Oct; 5(10):180951. PubMed ID: 30473840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the tensile static preload dependency on the dynamic lifetime prediction for an HNBR elastomer.
    El Maanaoui H; Egelkamp C; Meier J
    J Mech Behav Biomed Mater; 2021 Jul; 119():104502. PubMed ID: 33839537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure.
    Song Z; Ni Y; Cai S
    Acta Biomater; 2019 Jun; 91():284-293. PubMed ID: 31028909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
    Robertson SW; Ritchie RO
    Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Fracture Toughness and Conversion Degree of Resin-Based Dental Composites after Modification with Liquid Rubber.
    Pałka K; Kleczewska J; Sasimowski E; Belcarz A; Przekora A
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Design of Recycled Ethylene Propylene Diene Monomer Rubber Modified Epoxy Based Composites Reinforced with Alumina Fiber: Fracture Behavior and Damage Analyses.
    Irez AB; Zambelis G; Bayraktar E
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31454916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of fracture behavior of human atherosclerotic fibrous caps using a miniature single edge notched tensile test.
    Davis LA; Stewart SE; Carsten CG; Snyder BA; Sutton MA; Lessner SM
    Acta Biomater; 2016 Oct; 43():101-111. PubMed ID: 27431877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.